
C H A P T E R  3 

Statistical Methods and Error Handling 

3.1 I N T R O D U C T I O N  

This chapter provides a review of some of the basic statistical concepts and term- 
inology used in processing data. We need this information if we are to deal properly 
with the specific techniques used to edit and analyze oceanographic data. Our review 
is intended to establish a common level of understanding by the readers, not to 
provide a summary of all available procedures. 

In the past, all collected data were processed and reduced by hand so that the 
individual scientist had an opportunity to become personally familiar with each data 
value. During this manual reduction of data, the investigator took into account 
important information regarding the particular instrument used and was able to 
determine which data were "better" in the sense that they had been collected and 
processed correctly. Within the limits of the observing systems, an accurate des- 
cription of the data could be achieved without the application of statistical procedures. 
Individual intuition and familiarity with shipboard procedures took precedence in 
this type of data processing and analyses were made on comparatively few data. In 
such investigations, the question of statistical reliability was seldom raised and it was 
assumed that individual data points were correct. 

For the most part, the advent of the computer and electronic data collection meth- 
ods has meant that a knowledge of statistical methods has become essential to any 
reliable interpretation of results. Circumstances still exist, however, for which physi- 
cal oceanographers still assign considerable weight to the quality of individual 
measurements. This is certainly true of water sample data such as dissolved oxygen, 
nutrients, and chemical tracers collected from bottle casts. In these cases, the est- 
ablished methods of data reduction, including familiarity with the data and 
knowledge of previous work in a particular region, still produce valuable descriptions 
of oceanic features and phenomena with a spatial resolution not possible with 
statistical techniques. However, for those more accustomed to having data collected 
and/or delivered on high density storage media such as magnetic tape, CD-ROM, or 
floppy disk, statistical methods are essential to determining the value of the data and 
to decide how much of it can be considered useful for the intended analysis. This 
statistical approach arises from the fundamental complexity of the ocean, a 
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multivariate system with many degrees of freedom in which nonlinear dynamics and 
sampling limitations make it difficult to separate scales of variability. 

A fundamental  problem with a statistical approach to data reduction is the fact that 
the ocean is not a stationary environment in which we can make repeated measure- 
ments. By "stationary" we mean a physical system whose statistical properties remain 
unchanged with time. In order to make sense of our observations, we are forced to 
make some rather strong assumptions about our data and the processes we are trying 
to investigate. Basic to these assumptions is the concept of randomness and the 
consequent laws of probability. Since each oceanographic measurement can be con- 
sidered a superposition of the desired signal plus unwanted noise (due to measure- 
ment errors and unresolved geophysical variability), the assumption of random 
behavior often is applied to both the signal and the noise. We must consider not only 
the statistical character of the signal and noise contributions individually but also the 
fact that the signal and the noise can interact with each other. Only through the 
application of the concept of probability can we make the assumptions required to 
reduce this complex set of variables to a workable subset. Our brief summary of 
statistics will emphasize concepts pertinent to the analysis of random variables such as 
probability density functions and statistical moments (mean, variance, etc.). A brief 
glossary of statistical terms can be found in Appendix B. 

3.2 S A M P L E  D I S T R I B U T I O N S  

Fundamental  to any form of data analysis is the realization that we are usually 
working with a limited set (or sample) of random events drawn from a much larger 
population. We use our sample to make estimates of the true statistical properties of 
the population. Historically, studies in physical oceanography were dependent on too 
few data points to allow for statistical inference ~ and individual samples were 
considered representative of the true ocean. Often, an estimate of the population 
distribution is made from the sample set by using the relative frequency distribution, 
or histogram, of the measured data points. There is no fixed rule on how such a 
histogram is constructed in terms of ideal bin interval or number of bins. Generally, 
the more data there are, the greater the number of bins used in the histogram. Bins 
should be selected so that the majority of the measurements do not fall on the bin 
boundaries. Since the area of a histogram bin is proportional to the fraction of the 
total number of measurements in that interval, it represents the probability that an 
individual sample value will lie within that interval (Figure 3.1). 

The most basic descriptive parameter for any set of measurements is the sample 
mean. The mean is generally taken over the duration of a time series (time average) or 
over an ensemble of measurements (ensemble mean) collected under similar 
conditions (Table 3.1). If the sample has N data values, Xl, x2, ... , Xx, the sample 
mean is calculated as 

1 N X-=-~ZXi. (3.2.1) 
1=1 

The sample mean is an unbiased estimate of the true population mean,/~. Here, an 
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Figure 3.1. Histogram giving the percentage occurrences for the times of satellite position fixes during a 
24-h day. Data are for satellite-tracked surface drifter #4851 deployed in the northeast Pacific Ocean 
from 10 December 1992 to 28 February 1993. During this 90-day period, the satellite receiver on the 

drifter was in the continuous receive mode. 

Table 3.1. Statistical values for the data set x - { x i ,  i - 1 . . . . .  9} = {-3, -1, O, 2, 5, 7, 11, 12, 12} 

Standard 
Mean ~ Variance s ~2 Variance s 2 deviation, s Range Median Mode 

5.00 30.22 34.00 5.83 15 5 12 

"unbiased" estimator is one for which the expected value, E[x], of the estimator is 
equal to the parameter  being estimated. In this case, E[x] = #  for which ~ is an 
"unbiased estimator. The sample mean locates the center of mass of the data 
distribution such that 

N 

(.X" i - - .~)  -- 0 
i=1 

that is, the sample mean splits the data so that there is an equal weighting of negative 
and positive values of the fluctuation, x ~-- x i -  ~, about the mean value, ~. The 
weighted sample mean is the general case of (3.2.1) and is defined as 

_ 1 ~-~fixi (3 .2 .2 )  X - - ~ .  
l = l  

where f i / N  is the relative frequency of occurrence of the ith value for the particular 
experiment or observational data set. In (3.2.1), fi - 1 for all i. 

The sample mean values give us the center of mass of a data distribution but not its 
width. To determine how the data are spread about the mean, we need a measure of 
the sample variability or variance. For the data used in (3.2.1), the sample variance is the 
average of the square of the sample deviations from the sample mean, expressed as 
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S t 2  1 N ~ (X i __ ~)2 (3.2.3) 
i=l 

The sample standard deviation s ~ = v / ~  the positive square root of (3.2.3), is a measure 
of the typical difference of a data value from the mean value of all the data points. In 
general, these differ from the corresponding true population variance, a2, and the 
population standard deviation, ~. As defined by (3.2.3), the sample variance is a biased 
estimate of the true population variance. An unbiased estimator of the population 
variance is obtained from 

s2 - 1 N 
- N----Z-T_ 1 ~. (Xi- ~-)2 (3.2.4a) 

1=1 

N -  1 (xil2 1 = ~ _ ( ).~.?.ah... _ _~, 
i=1 N i=1 

where the denominator  N -  1 expresses the fact that we need at least two values to 
define a sample variance and standard deviation, s. The use of the estimators s versus s' 
is often a matter  of debate among oceanographers, although it should be noted that the 
difference between the two values decreases as the sample size increases. Only for 
relatively small samples (N < 30) is the difference significant. Because s' has a smaller 
mean square error than s and is an unbiased estimator when the population mean is 
known a priori, we recommend the use of (3.2.4). However, a word of caution: if your 
hypothesis depends on the difference between s and s t, then you have ventured onto 
shaky statistical ground supported by questionable data. We further note that the 
expanded relation (3.2.4b) is a more efficient computational formulation than (3.2.4a) 
in that it allows one to obtain s 2 from a single pass through the data. If the sample mean 
must be calculated first, two passes through the same data set are required rather than 
one, which is computationally less efficient when dealing with large data sets. " 

Other statistical values of importance are the range, mode, and median of a data 
distr ibution (Table 3.1). The range is the spread or absolute difference between the 
end-point values of the data set while the mode is the value of the distribution that 
occurs most often. For example, the data sequence 2, 4, 4, 6, 4, 7 has a range of 
12 -  7] = 5 and a mode of 4. The median is the middle value in a set of numbers  
arranged according to magni tude (the data sequence - 1 ,  0, 2, 3, 5, 6, 7 has a median of 
3). If there is an even number  of data points, the median value is chosen mid-way 
between the two candidates for the central value. Two other measures, skewness (the 
third moment  of the distribution and degree of asymmetry of the data about the mean) 
and kurtosis (a nondimensional  number  measuring the flatness or peakedness of a 
distribution) are less used in oceanography. 

As we discuss more thoroughly later in this chapter, the shapes of many sample 
distr ibutions can be approximated by a normal (also called a bell or Gaussian) distri- 
bution. A convenient aspect of a normal population distr ibution is that we can apply 
the following empirical "rule of thumb"  to the data: 

# _+ cr spans approximately 68% of the measurements;  
# _ 2a spans approximately 95% of the measurements;  
# _ 3~ spans most (99%) of the measurements .  
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The percentages are represented by the areas under the normal distribution curve 
spanned by each of the limits (Figure 3.2). We emphasize that the above limits apply 
only to normal distributions of random variables. 

Figure 3.2. Normal distribution f(x) for mean # and standard deviation a of the random variable X. 
(From Harnett and Murphy, 1975.) 

3.3 P R O B A B I L I T Y  

Most data collected by oceanographers are made up of samples taken from a larger 
unknown population. If we view these samples as random events of a statistical 
process, then we are faced with an element of uncertainty: "What are the chances that 
a certain event occurred or will occur based on our sample?" or "How likely is it that a 
given sample is truly representative of a certain population distribution? " (The last 
question might be asked of political pollsters who use small sample sizes to make 
sweeping statements about the opinions of the populace as a whole.) We need to find 
the best procedures for inferring the population distribution from the sample 
distribution and to have measures that specify the goodness of the inference. 
Probability theory provides the foundation for this type of analysis. In effect, it 
enables us to find a value between 0 and 1 which tells us just how likely is a particular 
event or sequence of events. A probability is a proportional measure of the occurrence 
of an event. If the event has a probability of zero, then it is impossible; if it has a 
probability of unity, then it is certain to occur. Probability theory as we know it today 
was initiated by Pascal and Fermat in the seventeenth century through their interest 
in games of chance. In the eighteenth century, Gauss and Laplace extended the theory 
to social sciences and actuarial mathematics. Well-known names like R. A. Fisher, J. 
Neyman, and E. S. Pearson are associated with the proliferation of statistical 
techniques developed in the twentieth century. 

The probability mass function, P(x), gives the relative frequency of occurrence of each 
possible value of a discrete random variable, X. Put another way, the function 
specifies the point probabilities P ( x i )  = P(X  - xi) and assumes nonzero values only at 
points X = xi, i = 1, 2, .... One of the most common examples of a probability mass 
function is the sum of the dots obtained from the roll of a pair of dice (Table 3.2). 
According to probability theory, the dice player is most likely to roll a 7 (highest 
probability mass function) and least likely to roll a 2 or 12 (lowest probability mass 
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Table 3.2. The discrete probability mass function and cumulative probability functions for the sum of the 
dots (variable X) obtained by tossing a pair of dice 

Sum of 
dots Frequency of Relative Probability mass 
(X) occurrence frequency function, P(x) 

Cumulative probability 
function F(x) = P(X <_ x) 

2 1 1/36 P(x = 2 ) =  1/36 
3 2 2/36 P(x = 3 ) =  2/36 
4 3 3/36 P(x = 4) = 3/36 
5 4 4/36 P(x = 5) = 4/36 
6 5 5/36 P(x = 6) = 5/36 
7 6 6/36 P(x = 7) = 6/36 
8 5 5/36 P(x = 8) = 5/36 
9 4 4/36 P(x = 9) = 4/36 

10 3 3/36 P(x - 10) = 3/36 
11 2 2/36 P(x = 11) = 2/36 
12 1 1/36 P(x = 12)  = 1/36 

SUM 36 1.00 

F(2) = P(X <_ 2) = 1/36 
F(3) = P(X <_ 3) = 3/36 
F(4) = P(X <_ 4) = 6/36 

F(5) - P(X <_ 5) = 10/36 
F(6) = P(X <_ 6) = 15/36 
F(7) = P(X <_ 7) = 21/36 
F(8) = P(X <_ 8) - 26/36 
F(9) = P(X <_ 9) = 30/36 

F(IO) =P(X_< 10) = 33/36 
Fll) =P(X_< 11) = 35/36 

F(12) = P(X <_ 12) = 1 
1 . 0 0  

function).  The  dice example  reveals two of the fundamenta l  propert ies  of all discrete 
probabi l i ty  functions: (1) 0 _< P(X = x); and (2) ~ P(x) = 1, where the summat ion  is 
over all possible values of x. The counterpar t  to P(x) for the case of a cont inuous  

r andom variable X is the probability density function (abbreviated,  PDF) , f (x ) ,  which we 
discuss more  fully later in the chapter .  For the cont inuous  case, the above 
fundamen ta l  propert ies  become: (1) 0_<f(x) ;  and ( 2 ) f f ( x ) d x =  1 where the 
in tegra t ion  is over all x in the range ( - ~ ,  ~ ) .  

To fur ther  i l lustrate the concept  of probabili ty,  consider  N independen t  trials, each 
of which has the same probabi l i ty  of "success" p and probabil i ty  of " fa i lure"  
q = 1 - p .  The  probabil i ty  of success or failure is unity; p + q = 1. Such trials involve 

b inomial  d is t r ibut ions  for which the outcomes can be only one of two events: for 
example ,  a tossed coin will produce a head or a tail; an XBT will work or it won't  work. 
If  X represents  the n u m b e r  of successes that occur in the N trials, then X is said to be 
a discrete r andom variable having parameters  (N, p). The  term "Bernoul l i  t r ial"  is 

somet imes  used for X. The probabi l i ty  mass function which gives the relative 
f requency of occurrence of each value of the random variable X having parameters  (N, 
p) is the b inomial  d is t r ibut ion 

p(x)_ (N) )N-x x p x ( 1 - P  ' x = 0, 1, ..., N (3.3.1a) 

where the expression 

(3.3.1b) 

is the n u m b e r  of different  combinations of groups ofx  objects that  can be chosen from a 

total set of N objects without  regard to order. The n u m b e r  of different  combinat ions  of 
x objects is always fewer than the number  of permutations, NPx, of x objects 
[NPx =--N!/(N-x)!].  In the case of permuta t ions ,  dif ferent  order ing of the same 
objects counts  for a different  pe rmuta t ion  (i.e. ab is different  than ba). As an example,  
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the number of possible different batting orders (permutations) a coach can create 
among the first four hitters on a nine-person baseball team is 9!/(9 - 4)! = 9!/5! = 
3024. In contrast, the number of different groups of ball-players a coach can put in the 
first four lead-off batting positions without regard to batting order is 9!/[(9 - 4)!4!] = 
9!/5!4! = 126. The numbers 

(N) 
x 

often are called binomial coefficients since they appear as coefficients in the expansion 
of the binomial expression (a + b) N given by the binomial theorem: 

N() (a + b)n _ ~-~ N akbn_ k 
k-o k 

(3.3.2) 

The summed probability mass function 

b 

P(a <_ x <_ b) - ~ P(x) 
(l 

for variable X over a specified range of values (a, b) can be demonstrated by a simple 
oceanographic example. Suppose there is a probability 1 - p  that a current meter will 
fail when moored in the ocean and that the failure is independent from current meter 
to current meter. Assume that a particular string of meters will successfully measure 
the expected flow structure if at least 50% of the meters on the string remain 
operative. For example, a two-instrument string used to measure the barotropic flow 
will be successful if one current meter remains operative while a four-instrument 
string used to resolve the baroclinic flow will be successful if at least two meters 
remain operative. We then ask: "For what values ofp is a four-meter array preferable 
to a, two-meter  array?" Since each current meter is assumed to fail or function 
independently of the other meters, it follows that the number of functioning current 
meters is a binomial random variable. The probability that a four-meter mooring is 
successful is then 

4 (  4 ) 4-~ 
P(2 _< x _< 4 ) =  ~ p k ( 1 - p )  

k=2 k 

( 4 )  )2 ( 4 )  ( 4 )  )0 
= 2 p 2 ( 1 - P  + 3 p 3 ( 1 - p ) I +  4 p 4 ( 1 - P  

__ 6p2(1 _p)2 _+_ 4p3(1 _p ) l  _+_p4 

Similarly, the probability that a two-meter array is successful is 

2 (  2 ) )2-k 
P ( I _ < x < _ 2 ) - Z  k pk(1 - p  

k=l  

=2p(1 _p )  +p2 

From these two relations, we find that the four-meter string is more likely to succeed 
when 
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6p2(1 _p)2 + 4p3(1 _p) l  q_p4 ~ 2p(1 - p ) + p 2  

or, after some factoring and simplification, when 

( p -  1)2 + ( 3 p -  2) >_ 0 

for which we find 3 p -  2 > 0, or p > 2/3. When compared to the two-meter array, the 
four-meter array is more likely to do its intended job when the probability, p, that the 
instrument works is p > 2/3. The two-meter array is more likely to succeed when 
p<_2/3. 

As the previous example illustrates, we often make the fundamental assumption 
that each sample in our set of observations is an independent realization drawn from a 
random distribution. Individual events in this distribution cannot be predicted with 
certainty but their relative frequency of occurrence, for a long series of repeated trials 
(samples), is often remarkably stable. We further remark that the binomial distri- 
bution is only one type of probability density function. Other distribution functions 
will be discussed later in the chapter. 

3.3.1 Cumulative probability functions 

The probability mass function yields the probability of a specific event or probability 
of a range of events. From this function we can derive the cumulative probability 
function, F(x)--also called the cumulative distribution function, cumulative mass 
function, and probability distribution functionmdefined as that fraction of the 
total number of possible outcomes X (a random variable) which .are less than a 
specific value x (a number). Thus, the distribution function is the probability that 
X<_x, or 

F(x) = P ( X  < x) 

= ~ P(x),-oo < x < oc (discrete random variable, X) (3.3.3a) 
allX_<x 

Y 

- / f(x) dx (continuous random variable, X) (3.3.3b) 
I J, 

- - O O  

The discrete cumulative distribution function for tossing a pair of fair dice (Table 3.2) 
is plotted in Figure 3.3. Since the probabilities P and fare  limited to the range 0 and 1, 
we have F ( - o c ) =  0 and F ( o c ) =  1. In addition, the distribution function F(x) is a 
nondecreasing function of x, such that F (Xl )<  F(x2) for xl < x2, where F(x) is 
continuous from the right (Table 3.2). 

It follows that, for the case of a continuous function, the derivative of the 
distribution function F with respect to the sample parameter, x 

dF(x) (3.3.4) 
f ( x ) =  dx 

recovers the probability density function (PDF),f. As noted earlier, the PDF has the 
property that its integral over all values is unity 
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Figure 3.3. The discrete mass function P(x) and cumulative distribution function F(x) from tossing a pair 
of dice (see Table 3.2). (From Harnett and Murphy, 1975.) 

OO 

f (x) dx - F ( ~ )  - F ( - ~ )  - 1 

- -  ( X )  

In the limit dx-- ,  0, the fraction of outcomes for which x lies in the interval 
x < x'  < x + dx is equal to f ( x ' ) d x ,  the probability for this interval. The random 
variables being considered here are continuous so that the PDF can be defined by 
(3.3.4). Variables with distribution functions that contain discontinuities, such as the 
steps in Figure 3.3, are considered discrete variables. A random variable is considered 
discrete if it assumes only a countable number of values. In most oceanographic 
sampling, measurements can take on an infinity of values along a given scale and the 
measurements are best considered as continuous random variables. The function F(x) 
for a continuous random variable X is itself continuous and appears as a smooth 
curve. Similarly, the PDF for a continuous random variable X is continuous and can 
be used to evaluate the probability that X falls within some interval [a, b] as 

b 

P(a <_ X <_ b) - f f(x) 
a 

(3.3.5) 

3.4 M O M E N T S  A N D  E X P E C T E D  V A L U E S  

The discussion in the previous section allows us to determine the probability of a 
single event or experiment, or describe the probability of a set of outcomes for a 
specific random variable. However, our discussion is not concise enough to describe 
fully the probability distributions of our data sets. The situation is similar to section 
3.2 in which we started with a set of observed values. In addition to presenting the 
individual values, we seek properties of the data such as the sample mean and variance 
to help us characterize the structure of our observations. In the case of probability 
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distributions, we speak not of observed mean and variance but of the expected mean and 
variance obtained from an infinite number of realizations of the random variable 
under consideration. 

Before discussing some common PDFs, we need to review the computation of the 
parameters used to describe these functions. These parameters are, in general, called 
"moments" by analogy to mechanical systems where moments describe the distri- 
bution of forces relative to some reference point. The statistical concept of degrees-of- 
freedom is also inherited from the terminology of physical-mechanical systems where 
the number of degrees-of-freedom specifies the motion possible within the physical 
constraints of the mechanical system and its distribution of forces. As noted earlier, 
the population mean, #, and standard deviation, 0., define the first and second 
moments which describe the center and spread of the probability function. In general, 
these parameters do not uniquely define the PDF since many different PDFs can have 
the same mean and standard deviation. However, in the case of the Gaussian 
distribution, the PDF is completely described by # and 0.. In defining moments we 
must be careful to distinguish between moments taken about the origin and moments 
taken about the mean (central moments). 

When discussing moments it is useful to introduce the concept of expected value. 
This concept is analogous to the notion of weighted functions. For a discrete random 
variable, X, with a probability function P(x) (the discrete analogue to the continuous 
PDF), the expected value of X is written as E[X] and is equivalent to the arithmetic 
mean, #, of the probability distribution. In particular, we can write the expected value 
for a discrete PDF as 

N 

E[x] = ~ yiP(xi) - -  # (3.4.1) 
i=1 

where # is the population mean introduced in Section 3.2. The probability function 
P(x) serves as a weighting function similar to the functionf-v/N in equation .(3.2.2). The 
difference is thatf.JN is the relative frequency for a single set of experimental Sampl~s 
whereas P(x) is the expected relative frequency for an infinite number of samples from 
repeated trials of the experiment. The expected value, E[X], for the sample which 
includes X, is the sample mean, ~. Similarly, the variance of the random variable X is 
the expected value of ( X -  #)2, or 

N 
V{X] -- E [ ( X -  # ) 2 ]  _ ~ (x - #)2p(xi) - 0 .2 ( 3 . 4 . 2 )  

i=1 

In the case of a continuous random variable, X, with PDF f(x), the expected value is 

O(3 

E[X] = J xf (x) dx (3.4.3) 
- -  ( X 3  

while for any function g(X) with a PDF f(x), the expected value can be written as 

E[X] = / g(x)f (x) dx (continuous variable) (3.4.4a) 
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N 
= ~-~g(xi)P(xi) (discrete case) (3.4.4b) 

i=1 

Some useful properties of expected values for random variables are: 

(1) For c = constant; E[c] = c, V[c] =0; 
(2) E[cg(X)] = cE[g(X)], V[cg(X)] = c2V[g(X')]; 
(3) E[gl (X) 4- g2(X)  4- ... ] : E[gl (X)] •  4- ... ]; 
(4) V[g(X)] = E[(g(X) tL) 2] = E[g(X) 2] - t f l ,  (variance about the mean); 

(5) E[glg2] -- E[gl ]E[g2] ;  
(6) V[gl 4-g2] - Vigil + V[g2] 4- 2C[gl, g2]. 

Property (6) introduces the covariance function of two variables, C, defined as 

C[gl, g2] = E[glg2] - E[gl]E[g2] (3.4.5) 

where C = 0 when gl and g2 are independent random variances. Using properties (1) to 
(3), we find that E[Y] for the linear relation Y - a + bX can be expanded to 

E[Y] - E[a + bX] - a + bE[X] 

while from (1) and (6)we find 

V[Y] = V[a + bX] -- b2V[X] 

At this point, we remark that averages, expressed as expected values, E[X], apply to 
ensemble averages of many (read, infinite) repeated samples. This means that each 
sample is considered to be drawn from an infinite ensemble of identical statistical 
processes varying under exactly the same conditions. In practice, we do not have 
repeated samples taken under identical conditions but rather time (or space) records. 
In using time or space averages as representative of ensemble averages, we are 
assuming ~ a t  our records are ergodic. This implies that averages over an infinite 
ensemble can be replaced by an average over a single, infinitely long time series. An 
ergodic process is not to be confused with a stationary process for which the PDF of 
X(t)  is independent of time. In reality, time/space series can be considered stationary 
if major shifts in the statistical characteristics of the series occur over intervals that 
are long compared to the averaging interval so that the space/time records remain 
homogeneous (exhibit the same general behavior) throughout the selected averaging 
interval. A data record that is quiescent during the first half of the record and then 
exhibits large irregular oscillations during the second half of the record is not 

stationary. 

3.4.1 Unbiased estimators and moments 

As we stated earlier, ~ and s 2 defined by (3.2.2) and (3.2.4) are unbiased estimators of 
the true population mean, #, and variance, a 2. That is, the expected values of ~ and 
( x -  ~)2 are equal to # and a 2, respectively. To illustrate the nature of the expected 
value, we will first prove that E(~) = #. We write the expected value as the normalized 

sum of all 2 values 
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I N ~  ] 1~-~ 1~-~ E[X]  - -  E Xi - ~ - ~  E[x i ]  = ~ l~ - -  t-Z 
i=1 i=1 i=1 

as required. Next, we demonstrate that E[s 2] = 0-2. We again use the appropriate 
definitions and write 

1 - 1 - 1 Z (Xi- ~)2 
i=1 

=E[NI_I {~__I [(xi-#)2-N(x-#)2]} ] 

= N----2~ Z ( ~  - ( N -  1) - o .2 
i=1 N - 1  

where we have used the relations Xi --  :~ - -  (Xi -- ].Z) 2 (2  -- ~ ) ,  E [ ( x i  - # ) 2 ]  _ V[x i ]  - 0 -2 

(the variance of an individual trial) and E [ ( ~ -  #) ] - V[~] - o2/N (the variance of 
the sample mean relative to the population mean). The last expression derives from 
the central limit theorem discussed in Section 3.6. 

Returning to our discussion of statistical moments, we define the ith moment of the 
random variable X, taken about the origin, as 

E [  Xz]  - fl, i ( 3 . 4 . 6 )  

Thus, the first moment about the origin (i=1) is the population mean, # - # 1 .  
Similarly, we can define the ith moment of X taken about the mean (called the ith 
central moment of X) as 

E [ ( X -  ~) i ]  - -  ~ i  ( 3 . 4 . 7 )  

The population variance, a~ 2, is the second (i - 2) central moment, #2. 

3.4.2 Moment  generating functions 

Up to this point, we have computed the various characteristics of the random variable 
X using the probability functions directly. Now, suppose we look for a "generating" 
function that enables us to find all of the expected properties of the variable X using 
just this one function. For a discrete or continuous random variable X we define a 
moment generating function as m(t) = E[e tx] for the real variable, t. The moment 
generating function m(t) serves two purposes. First, if we can find E[etX], we can find 
any of the moments of X; second, ifm(t) exists it is unique and can be used to establish 
that both random variables have the same probability distributions. In other words, it 
is not possible for random variables with different probability distributions to have 
the same moment generating functions. Likewise, if the moment generating functions 
for two random variables are the same, then both variables must have the same 
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probability distribution. For a single-valued function X with a probability function, 
P ( X  = xk), k = 1, 2, ... in the discrete case, andf(x) in the continuous case, the moment 
generating function, m(t), is 

OO 

m(t) = E[e tx] = E et~'iP(xi) (3.4.7a) 
i=1 

OG 

= f etXf(x)dx (3.4.7b) 

- -OO 

The advantages of the moment  generating function become more apparent if we 
expand e tx in the usual way to get 

e tx = 1 + tX  + (tX)2/2! + ... + (tX) n/n! + ... 

and apply this to m(t) so that 

m(t) = E[e tx] - El1 + tX  + (tX)2/2! + ... + (tX)n/n! + ... ] 

= 1 + tE[X] + t2E[X2]/2! + ... + tnE[X~]/n!+ ... 
(3.4.8) 

Taking the derivatives of (3.4.8), we find 

m'(t) = E[X] + tE[X 2] + ... + tn-lE[X~]/(n - 1)! + ... 

m"(t) = E[X 2] + tE[X 3] + ... + tn-2E[Xn]/(n - 2)! + ... 

(3.4.9a) 
(3.4.9b) 

and so on (here, m' = dm/dt). Setting t = 0 in (3.4.9) and continuing in the same way, 
we obtain 

m' (0) = E[X]; m" (0) = E[X2]; ... ; m (n) (0) = E[X"] (3.4.10) 

In other words, we can easily obtain all the moments of the generating function m(t) 
from the derivatives evaluated at t = 0. Specifically, we note that 

E[X] = m'(0) (3.4.1 la) 

V[X] = E [ X  2] - ( E [ X ] )  2 = m" (0) - [m'(0)] 2 (3.4.1 lb) 

As a first example, suppose that the discrete variable X is binomially distributed 
with parameters N and p as in (3.3.1a). Then 

m(t) = E etk (1 - p  
k-0 k pk 

N (  N ) )k p)N-k e t = E  k (pe t ( 1 -  - [ p  + ( 1 - - p ) l N  
k=0 

where we have used the binomial expansion 
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from (3.3.2). Taking the derivatives of this function and evaluating the results at t - 0, 
as per (3.4.11), yields the mean and variance for the binomial probability function, 

E[X] - m' (0) - Np 

V[X] - m"(O) - {m'(O)}2= Np(1 - p )  - Npq 

As a further example, consider the density of a continuous random variable x given by 

f ( x ) - a 2 x e  -~x, if x > 0  

= 0, otherwise 

Using (3.4.7b), we first write the moment generating function m(t) as 

Oo OO 

m ( t ) -  / e t X f ( x ) d x - o ~ 2 / x e - ( ~ - t ) X d x  

--OC, 0 

For a - t  > 0, and hence t < a 

OC 

m(t) = a 2 / x e-(~-tlXdx 

o 

[ - t) o - t )  ( a - t )  2 ( a - t )  2' 
fo r t  < a  

For t >_ a, m(t) is not defined. Using (3.4.11), we find 

E[X] - m'(t = O) = # = 
2a 2 

(o~ - t) 3 t = 0  

2 

cr 

Similarly, we find the second moment V [ X ] -  m" as 

V[X] - m"(t - O) - #2 = 6a2 I - - / 2 2  - -  6/a2 - 4/a2 -- 2/a2 
(a --t) 4 t-0 

Several properties of moment generating functions (MGFs) are worth mentioning 
since they may be used to simplify more complicated functions. These are: (1) if the 
random variable X has a moment generating function m(t), then the MGF of the 
random variable Y -  a X  + b is m(t) - ebtm(at); (2) if X and Y are random variables 
with respective MGFs m(t; X)  and m(t: Y), and if m(t: X)  - m(t: Y) for all t, then X and 
Y have the same probability distribution; (3) If Xk, k - 1, . . . ,  n, are independent 
random variables with MGFs defined by m(t: Xk), then the MGF of the random 
variable Y - X~ + X2 + ... § X,, is given by the product, m(t: Y) - m(t: X~)m(t: X2) ... 
m(t: X,,). 

For convenience, the probability density functions, means, variances, and moment 
generating functions for several common continuous variables are presented in 
Appendix C. Moments allow us to describe the data in terms of their PDFs. 
Comparisons between moments from two random variables will establish whether or 
not they have the same PDF. 
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The purpose of this section is to provide examples of three common PDFs. The first is 
the uniform PDF given by 

1 
f ( x )  - ~ ,  Xl ~ x ~ x2 

x2 -X l  (3.5.1) 
= 0, otherwise 

(Figure 3.4) which is the intended PDF of random numbers generated by most 
computers and handheld calculators. The function is usually scaled between 0 and 1. 
The cumulative density function F(x) given by (3.3.3b) has the form 

F(x) - 0, x ~ x 1  
x - x 1  

x2 -- Xl 
~ ,  xl <_x <_x2 

--1,  x>x2  

while the mean and standard deviation of (3.5.1) are given by ~ = (x2 +xl)/2 and 
~r -- (xz - xl  ) /2V/3.  

f(x) 

I 

(b-~) 

(a) 

a b x 

F(x) 

I.O 

o.$ 

(b) 

1 

a b X 

Figure 3.4. Uniform probability density distribution functions. (a) The probability density function, f(x); 
and (b) the corresponding cumulative probability distribution function, F(x). (From Bendat and Piersol, 

1986.) 
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Perhaps the most familiar and widely used PDF is the normal (or Gaussian) density 
function: 

e[-(x-i~)2/2~] 
f (x )= , a > 0 , - ~ < # < ~ , - e ~ < x < e ~  (3.5.2) 

crv/(27r) 

where the parameter ~ represents the standard deviation (or spread) of the random 
variable X about its mean value # (Figure 3.2). For convenience, (3.5.2) is often 
written in shorthand notion as N(#,  r The height of the density function at 
x = # is 0.399/~. The cumulative probability distribution of a normally distributed 
random variable, X, lying in the interval a to b is given by the integral (3.3.5) 

~a b e [-(x-~)2/2~z] 
P(a <_ X <_ b) - ~v/(2~ ) dx (3.5.3) 

which is the area under the normal curve between a and b. Since a closed form of this 
integral does not exist, it must be evaluated by approximate methods, often involving 
the use of tables of areas. We have included a table of curve areas in Appendix D 
(Table D.1). The normal distribution is symmetric with respect to # so that areas need 
to be tabulated only on one side of the mean. For example, P(#  _< x _< # + 1~) = 
0.3413 so by symmetry P(#  - 1 cr < x < # + 1~) = 2(0.3413) = 0.6826. The latter is the 
value used in the rule of thumb estimates for the range of the standard deviation, ~. 
For the normal distribution, the tabulated values represent the area between the mean 
and a point z, where z is the distance from the mean measured in standard deviations. 
This leads to the familiar transform for a normal random variable X given by 

X - #  
Z - ~ (3.5.4) 

called the standardized normal variable. The variable Z gives the distances of points 
measured from the mean of the normal random variable in terms of the standard 
deviation of the normal random variable, X (Figure 3.5). The standard normal 
variable Z is normally distributed with a mean of zero (0) and a standard deviation of 
unity (1). Thus, if X is described by the function N(#, eft), then Z is described by the 
function N(0, 1). 

Our third continuous PDF is the gamma density function which applies to random 
variables which are always nonnegative thus producing distributions that are skewed 
to the right. The gamma PDF is given by 

xr~- l e-x / /3 
f(x) - a, fl > 0; 0 _< x _< c~ (3.5.5) 

- O, elsewhere 

where a and 3 are parameters of the distribution and F(c~) is the gamma function 

OC 

r(a)= f x'~-le-Xdx (3.5.6) 

0 

For any integer n 
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Figure 3.5. Distribution f(z) for the standardized normal random variable, Z = ( X -  # ) /a  (cf. Figure 
3.2). (From Harnett and Murphy, 1975.) 

F(n)  - (n - 1) (3.5.7) 

while for a continuous variable c~ 

F(r = ( ~ -  1 ) F ( ~ -  1), for c~ _> 1 (3.5.8) 

where F(1)  = 1. Plots of  the g a m m a  P D F  for fl = 1 and three values of  the parameter r 
are presented in Figure 3.6. Since it is again impossible to define a closed form of the 
integral of the PDF in (3.5.5), tables are used to evaluate probabilities from the PDF. 

One particularly important gamma density function has a PDF with ~ = v /2  and 
/3 = 2. This is the chi-square random distribution (written as ~r and pronounced "ki 
square") with u degrees of freedom (Appendix D, Table D.2). The chi-square distri- 
bution gets its name from the fact that it involves the square of  normally  distributed 
random variables, as we will explain shortly. Up to this point, we have dealt with a 

- 2  

a = 4  

0 X 

Figure 3.6. Plots of the gamma function for various values of the parameter c~ (~ = 1). 
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single random variable X and its standard normalized equivalent, Z = ( X -  #)/~r. We 
now wish to investigate the combined properties of more than one standardized 
independent normal variable. For example, we might want to investigate the 
distributions of temperature differences between reversing thermometers and a 
CTD thermistor for a suite of CTD versus reversing thermometer intercomparisons 
taken at the same location. Each cast is considered to produce a temperature dif- 
ference distribution Xk with a mean #k and a variance a~. The set of standardized 
independent normal variables Zk formed from the casts is assumed to yield u 
independent standardized normal variables Z1, Z2, ..., Z~. The new random variable 
formed from the sum of the squares of the variables Z1, Z2, ... , Z~ is the chi-square 
variable X 2 where 

X2t, - -  a ~  q- g~  n t- ... --t- 2 2  (3.5.9) 

has ~, degrees of freedom. For the case of our temperature comparison, this represents 
the square of the deviations for each cast about the mean. Properties of the distri- 
bution are 

Mean - E[X2~] - 
(3.5.10a) 

Variance - E[(X2~, - r,) 2] - 2r, (3.5.10b) 

We will make considerable use of the function k: 2 in our discussion concerning 
confidence intervals for spectral estimates. 

It bears repeating that probability density functions are really just models for real 
populations whose distributions we do not know. In many applications, it is not 
important that our PDF be a precise description of the true population since we are 
mainly concerned with the statistics of the distributions as provided by the probability 
statements from the model. It is not, in general, a simple problem to select the right 
PDF for a given data set. Two suggestions are worth mentioning: (D Use available 
theoretical considerations regarding the process that generated the data; and (2) use 
the data sample to compute a frequency histogram and select the PDF that best fits 
the histogram. Once the PDF is selected, it can be used to compute statistical 
estimates of the true population parameters. 

We also keep in mind that our statistics are computed from, and thus are functions 
of, other random variables and are, therefore, themselves random variables. For 
example, consider sample variables XI, X2, ..., XN from a normal population with 
mean # and variance G2, then 

- -  1 N 
X = ~ Z X i  (3.5.11) 

i=1 

is normally distributed with mean # and variance o2/N. From this it follows that 

Z - ~ - # - ~ - # -  - = x/N ~ - / z  (3.5.12) 
o/v  

has a standard normal distribution N(0, 1) with zero mean and variance of unity. 
Using the same sample, XI, X2, ..., XN, we find that 
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1 N (N 1)s 2 2 (3.5.13) 
0.2 ~ (gi - ~ ) 2  - 

- -  0 .  2 - -  Xu i=1 

has a chi-square distribution (X 2) with L, - ( N -  1) degrees of freedom. (Only N -  1 
degrees of freedom are available since the estimator requires use of the mean which 
reduces the degrees of freedom by one.) Here, the sample standard deviation, s, is an 
unbiased estimate of 0.. We also can use ( X - X ) / ( s / v / N )  as an estimate of the 
standard normal statistic, (X-#) / (0 . /v /N) .  The continuous sample statistic 
( X - X ) / ( s / v / N )  has a PDF known as the Student's t-distribution (Appendix D, 
Table D.3) with ( N -  1) degrees of freedom. The name derives from an Irish statistic- 
ian named W. S. Gossett who was one of the first to work on the statistic. Because his 
employer would not allow employees to publish their research, Gossett published his 
results under the name "Student" in 1908. Mathematically, the random variable t is 
defined as a standardized normal variable divided by the square root of an independ- 
ently distributed chi-square variable divided by its degrees of freedom; viz. 
t -  z/  v/(xz /L,), where z is the standard normal distribution. Thus, one can safely 
use the normal distribution for samples ~, > 30, but for smaller samples one must use 
the t-distribution. In other words, the normal distribution gives a good approximation 
to the t-distribution only for L, > 30. 

The above relations for statistics computed from a normal population are important 
for two reasons: 

(a) often, the data or the measurement errors can be assumed to have population 
distributions with normal probability density functions; 

(b) one is working with averages that themselves are normally distributed regardless 
of the probability density function of the original data. This statement is a version 
of the well-known central limit theorem. 

3.6 C E N T R A L  L I M I T  T H E O R E M  

Let X1, X2, ... , X i ,  ... be a sequence of independent random variables with 
E [ X i ]  - -  ~ i  and V[Xi] = ~ .  Define a new random variable X = X1 + X2+ ... + XN. 
Then, as N becomes large, the standard normalized variable (N)  

X -  ~~ ~i 
ZN : i=1 (3.6.1) 

(i=~1 0.~)1/2 

takes on a normal distribution regardless of the distribution of the original population 
variable from which the sample was drawn. The fact that the Xi values may have any 
kind of distribution, and yet the sum X may be approximated by a normally 
distributed random variable, is the basic reason for the importance of the normal 
distribution in probability theory. For example, X might represent the summation of 
fresh water added to an estuary from a large number of rivers and streams, each with 
its own particular form of variability. In this case, the sum of the rivers and stream 
input would result in a normal distribution of the input of fresh water. Alternatively, 
the variable X, representing the success or failure of an AXBT launch, may be 
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represented as the sum of the following independent binomially-distributed random 
variables (a variable that can only take on one of two possible values) 

X i -  1 if the ith cast is a success 

= 0 if the ith cast is a failure 

with X = X1 + X2+ ... ~ - X N .  For this random variable, E[X] - Np and V[X] = 
Np(1 -p ) .  For large N, it can be shown that the variable ( X -  E[X])/v/V[X] closely 
resembles the normal distribution, N(0, 1). 

A special form of the central limit theorem may be stated as: the distribution of 
mean values calculated from a suite of random samples Xi (Xi, l, Xi,2, ...) taken from a 
discrete or continuous population having the same mean # and variance 0.2 ap- 
proaches the normal distribution with mean # and variance 02/N as N goes to infinity. 
Consequently, the distribution of the arithmetic mean 

- -  1 N 
X - - ~ Z X  i ( 3 . 6 . 2 )  

i=1 

is asymptotically normal with mean # and variance 0 "2/N when N is large. Ideally, we 
would like N ~ c~ but, for practical purposes, N _> 30 will generally ensure that the 
population of X is normally distributed. When N is small, the shape of the sample 
distribution will depend mainly on the shape of the parent population. However, as N 
becomes larger, the shape of the sampling distribution becomes increasingly more like 
that of a normal distribution no matter what the shape of the parent population 
(Figure 3.7). In many instances, the normality assumption for the sampling distrib- 
ution for X is reasonably accurate for N > 4 and quite accurate for N > 10 (Bendat 
and Piersol, 1986). 

The central limit theorem has important  implications for we often deal with average 
values in time or space. For example, current meter systems average over some time 
interval, allowing us to invoke the central limit theorem and assume normal~-statistics 
for the resulting data values. Similarly, data from high-resolution CTD systems are 
generally vertically averaged (or averaged over some set of cycles in time), thus 
approaching a normal PDF for the data averages, via the central limit theorem. An 
added benefit of this theorem is that the variance of the averages is reduced by the 
factor N, the number of samples averaged. The theorem essentially states that 
individual terms in the sum contribute a negligible amount to the variation of the 
sum, and that it is not likely that any one value makes a large contribution to the sum. 
Errors of measurements  certainly have this characteristic. The final error is the sum of 
many small contributions none of which contributes very much to the total error. Note 
that the sample standard error is an unbiased estimate (again in the sense that the 
expected value is equal to the population parameter being estimated) even though the 
component sample standard deviation is not. 

To further illustrate the use of the central limit theorem, consider a set of independ- 
ent measurements of a process whose probability distribution is unknown. Through 
previous experimentation, the distribution of this process was estimated to have a mean 
of 7 and a variance of 120. I f~  denotes the mean of the sample measurements, we want 
to find the number of measurements, N, required to a give a probability 

P(4 < ~ _< 10) - 0.866 
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Figure 3.7. Sampling distribution of the mean -~ for different types of population distributions for 
increasing sample size, N = 2, 5, and 30. The shape of the sampling distribution becomes increasingly 

more like that of a normal distribution regardless of the shape of the parent population. 

where  4 and  10 are the chosen  p rob lem limits.  Here ,  we use the centra l  l imi t  t h e o r e m  

to a rgue  that,  while  we don ' t  know the exact d i s t r ibu t ion  of our  var iable ,  we do know 

tha t  m e a n s  are n o r m a l l y  d is t r ibu ted .  Using  the s t anda rd  variable ,  z = ( x - # ) /  

( e / v / N ) ,  subs t i tu t ing  ~ for x, and  us ing the fact that  ~ = v/120 = 2v/30, we can then  

wri te  our  probabi l i ty  func t ion  as 
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P(4 < ~ < 1 0 ) - P [  (4-#)x/NeT < z <  (10-#)x/N]cr 

= p[.(4 - 7)x/N < z < (10 -- 7!_v/N] 
2x/'30 2v/30 ] 

[ - 3 v / N  3x/N] 
= P L 2 v/30 < z < 2 x/30] 

[z 3v/N] 
- 2P < 2v/30] - 1 - 0 . 8 6 6  

from which we find 

Iz 3v/N] 
P < 2x/,30 j - 0.933 

Assuming that we are dealing with a normal distribution, we can look up the value 
0.933 in a table to find the value of the integrand to which this cumulative probability 
corresponds. In this case, 3/2x/(N/30 ) = 1.5, so that N = 30. 

3.7 E S T I M A T I O N  

In most oceanographic applications, the population parameters are unknown and 
must be estimated from a sample. Faced with this estimation problem, the objective of 
statistical analysis is twofold" To present criteria that allow us to determine how well a 
given sample represents the population parameter; and to provide methods for 
estimating these parameters. An estimator is a rando m variable used to~ esti- 
mates of population parameters. "Good" estimators are those that satisfy a number of 
important  criteria: (1) Have average values that equal the parameter being estimated 
(unbiasedness property); (2) have relatively small variance (efficiency property); and (3) 
approach asymptotically the value of the population parameter as the sample size 
increases (consistency property). We have already introduced the concept of estimator 
bias in discussing variance and standard deviation. Formally, an estimate 0 of a 
parameter 8 (here, the hat symbol (^) indicates an estimate), is an unbiased estimate 
provided that E[~J] = 8; otherwise, it is a biased estimate with a bias B = E[0] - 8. An 
unbiased estimator is any estimate whose average value over all possible random 
samples is equal to the population parameter being estimated. An example of an 
unbiased estimator is the mean of the noise in an acoustic current meter record 
created by turbulent fluctuations in the velocity of sound speed in water; an example 
of a biased estimator is the linear slope of a sea-level record in the presence of a long- 
term trend (a slow change in average value). Other examples of unbiased estimators 

- ^ 2 The mean square error of our estimate 6J is are x for ~J, # for E[8], and c~ 2/N for %. 

E[(~J - 8) 2] = VIii] + B 2 (3.7.1) 

The most efficient estimator (property 2) is the estimator with the smallest mean 
square error. Since it is possible to obtain more than one unbiased estimator for the 
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same target parameter ,  0, we define the efficiency of an estimator as the ratio of the 
variances of the two estimators. For example, if we have two unbiased estimates 
01 and 02, we can compute the relative efficiency of these two estimates as 

e f f i c i e n c y -  V[~z]/V[~l] (3.7.2) 
L J L J 

where V[01] and V[02~ are the variances of the estimators. A low value of the ratio 
would suggest that V[02] is more efficient while a high value would indicate that V[01] 
is more efficient. As an example, consider the efficiency of two familiar estimators of 
the mean of a normal distribution. In particular,  let 01 be the median value and 02 be 
the sample mean. The variance of the sample median is V[01] - (1.2533cr)Z/N while 
the sample mean has a variance V[02] - ~ y Z / N .  Thus, the efficiency is 

e f f i c i e n c y -  V[~2]/V[~I] 
= (cr2/N)/(1.25332o-2/N) 

= 0.6366 

Therefore, the variabili ty of the sample mean is 63% of the variability of the sample 
median,  which indicates that the sample mean is a more efficient est imator than the 
sample median. 

As a second example,  consider the sample variances s '2 and s z given by (3.2.3) and 
(3.2.4), respectively. The efficiency of these two sample variances is the ratio ofs '2 to s 2 

N 
l / N  ~ (xi - ~)2 

i=1 N - 1  
= < 1  

:v N 
1 / ( N  - 1) ~ (xi - -  ~)2 

i=1 

which indicates that s '2 is a more efficient statistic than s 2. 
We can view the difference 0 -  0 as the distance between the population "target"  

value and our estimate. Since this difference is also a random variable, we can ask 
probabili ty-related questions, such as: "Wha t  is the probability 

P ( - b  < ( 0 - O )  < b) 

for some range ( -  b, b)?" It is common practice to express b as some multiple of the 
sample standard deviation of 0 (e.g. b = kao, k > 1). A widely used value is k = 2, 
corresponding to two standard deviations. Here, we can apply an important  result 
known as Tshebysheff's theorem which states that for any random variable Y, for k > 0: 

P ( l Y - # l  <ka)  >_ l k 2 
(3.7.3a) 

or  

1 
P ( I Y -  #l >- kcr) <_ ~ (3.7.3b) 

where ~ - E[~] and cr 2 - V[~']. Applying this to the problem at hand, we find that for 
k = 2, P(IO-  01 < 2~0) _> 1 - 1/(2) 2 - 0.75. Therefore, most random variables 
occurring in nature can be found within two standard deviations (+2~) of the mean 
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with a probability of 0.75. Note that the probability statement (3.7.3a) indicates that 
the probability is greater than or equal to the value of 1 -  1/k 2 for any type of 
distribution. We can, therefore, expect somewhat more than 75% of the values to lie 
with the range (-2~r, 2~). In fact, this is generally a conservative estimate. If we 
assume that oceanographic measurements are typically normally distributed, we find 
P ( [ Y -  #[ < 2~r)= 0.95, so that 95% of the observations lie within -l-2cr. This is an 
important conclusion in terms of editing methods which use criteria designed to select 
erroneous values from data samples based on probabilities. 

3.8 C O N F I D E N C E  I N T E R V A L S  

An important application of interval estimates for probability distribution functions is 
the formulation of confidence intervals for parameter estimates. These intervals define 
the degree of certainty that a given quantity 0 will fall between specified lower and 
upper bounds OL, OU, respectively, of the parameter estimates. The confidence interval 
(OL, OU) associated with a particular confidence statement is usually written as 

P ( O L < O < O u ) = l - a ,  O < a <  1 (3.8.1) 

where a is called the level of significance (or confidence coefficient) for the confidence 
statement and ( 1 -  a)100 is the percent significance level for the variable 0. (The 
terms confidence coefficient, significance level, confidence level and confidence are 
commonly used interchangeably). A typical value for a is 0.05, which means that 95% 
of the cumulative area under the probability curve (3.8.1) is contained between the 
points OL and Ou (Figure 3.8). For both symmetric and nonsymmetric probability 
distributions, each of the two points cuts off a /2  of the total area under the 
distribution curve, leaving a total area under the curve of 1 - c~; OL cuts off the left- 
hand part of the distribution tail and Ou cuts off the right-hand part of the tail. 

If OL, OU are derived from the true value of the variable 0 (such as the l~opulafion 
mean, #), then the probability interval is fixed. However, where we are using sample 
estimates (for example, the mean, X) to determine the variable value, 0, the 
probability interval will vary from sample to sample because of changes in the sample 
mean and standard deviation. Thus, we must inquire about the probability that the 
true value of 0 will fall within the intervals generated by each of the given sample 
estimates. The statement P(Oz, < 0 < Ou) does not mean that the population variable 0 
has a probability of P -  1 - a  of falling in the sample interval (OL, 0~), in the sense 
that 0 was behaving like a sample. The population variable is a fixed quantity. Once 

-Z~2 0 z'an 

Figure 3.8. Location of the limits (0~,, 0~1) = (-Z<~l~, +Z<,lZ) for a normal probability distribution. For 
a = 0.05, the cumulative area 1 - a corresponds to the 95% interval for the distribution. 
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the interval is picked, the population variable 0 is either in the interval or it isn't 
(probability 1 or 0). For the sample data, the interval may shift depending on the 
mean and variance of the particular sample we select from the population. We should, 
therefore, interpret (3.8.1) to mean that there is a probability P that the specified 
random sample interval (Or., 0or) contains the true population variable 0 a total of 
( 1 -  c~) 100% of the time. That is, ( 1 -  c~) is the fraction of the time that the true 
variable value 0 is contained by the sample interval (Or., 0or). 

In general, we need a quantity, called a pivotal quantity, that is a function of the 
sample estimator 0 and the unknown variable 0, where 0 is the only unknown. The 
pivotal quantity must have a PDF that does not depend on 0. For large samples 
(N_> 30) of unbiased point estimators, the standard normal distribution 
Z = ( 0 -  0) /% is a pivotal quantity. In fact, it is common to express the confidence 
interval in terms of Z. For example, consider the statistic 0 with E[tJ]-  0 and 
V[0] = or~; find the 100(1 - c~)% confidence interval. To do this, we first define 

P(-Za/2 < Z < Zc~/2) - 1 - oe (3.8.2) 

and then use the above relation Z -  (t~- 0) /% to get 

P(O - Za/2or ~ < 0 < 0 q-- Za/2orO) - 1 - c~ (3.8.3) 

This formula can be used for large samples to compute the confidence interval for 0 
once c~ is selected. Again, the significance level, 1 - c~, refers to the probability that the 
population parameter 0 will be bracketed by the given confidence interval. The 
meaning of these limits is shown graphically in Figure 3.8 for a normal population. 
We remark that if the population standard deviation or is known it should be used in 
(3.8.3) so that orO = r if not, the sample standard deviation s can be used with little 
loss in accuracy if the sample size is sufficiently large (i.e. N > 30). 

The three types of confidence intervals commonly used in oceanography are listed 
below. Specific usage depends on whether we are interested in the mean or the vari- 
ance of the quantity being estimated. 
t 

3.8.1 Confidence interval for # (or known) 
When the population standard deviation, or, is known and the parent population is 
normal (or N > 30), the 100 (1 -  c~) percent confidence interval for the population 
mean is given by the symmetrical distribution for the standardized normal distri- 
bution, z 

o r O" 
--  Za/2  ~ - ~  < # "( X q- ga /2  v/N (3.8.4) 

As an example, we wish to find the 95% confidence interval (c~ = 0.05) for/_t given the 
sample mean ~ and known normally distributed population variance, or2. Suppose that 
a thermister installed at the entrance to the ship's engine cooling water intake samples 
every second for N = 20 s and yields a mean ensemble temperature ~ = 12.7~ for the 
particular burst. Further,  suppose that the water is isothermal and that the only 
source of variability is instrument noise, which we know from previous calibration in 
the lab has a known noise level or = 0.5~ Since we want the 95% confidence interval, 
the appropriate values of z for the normal distribution are z,~/2 = 1.96 and 
-z,~/2 -- -1.96 (Appendix D, Table D.1). Substituting these values into (3.8.4) along 
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with N = 20, o- = 0.5~ and 2 - 12.7~ we find 

[12.7 - (1 .96)0.5/x/20]~ < # < [12.7 + (1.96)0.5/x/20]~ 

12.48~ < # < 12.92~ 

Based on our 20 data values, there is a 95% probability that the true mean temperature 
of the water will be bracketed by the interval (12.48~ 12.92~ derived from the 
random interval 

(2 -- Zc , /20 /x /N,  ~ + zc~/2o/v/N) 

3.8.2 Confidence interval for # (or unknown) 

In most real circumstances, ~r is not known and we must resort to the use of the sample 
standard deviation, s. Similarly, for small samples (N < 30), we cannot use the above 
technique but must introduce a formalism that works for any sample size and distri- 
bution, as long as the departures from normality are not excessive. Under these con- 
ditions, we resort to the variable t =  ( 2 - # ) / ( S / v / N ) ,  which has a Student 's t- 
distribution with u = ( N - 1 )  degrees of freedom. Derivation of the 1 0 0 ( 1 -  c~)% 
confidence interval follows the same procedure used for the symmetrically distr ibuted 
normal distribution, except that we must modify the limits. In this case 

[ /s ] 
P -t,~/2,~,< ( 2 - # )  -~<t,~/2,~,  - 1 -c~  (3.8.5) 

This is easily arranged to give the 100(1 -c~)% confidence interval for # 

s S 
2 -- t a / 2 , . - ~  < # < x + tc~/2,u x~ N (3.8.6) 

Note the similarity between (3.8.6) and the form (3.8.3) obtained for # when o- is 
known. We return to our previous example of ship injection temperature and this time 
assume that s = 0.5~ is a measured quantity obtained by subtracting the mean value 
2 -  12.7~ from the series of 20 measurements. Turning to Appendix D (Table D.3) 
for the cumulative t-distribution, we look for values of F(t) under the column for the 
95% confidence interval (c~ = 0.05) for which F(t) = 1 - c~/2 = 0.975. Using the fact 
that u - (N - 1) - 19, we find tc~/2,~, - t0.025,19 = 2.093. Substituting these values into 
(3.8.6), yields 

[12 .7 -  2.093(0.5/v/20)]~ < # < [12.7 + 2.093(0.5/v/20)]~ 

12.47~ < # < 12.93~ 

There is a 95% chance that the interval (12.47~ 12.93~ will bracket the true mean 
temperature.  Because of the large sample size, this result is only slightly different than 
the result obtained for the normal distribution in the previous example when a was 
known a priori. 
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3.8.3 Confidence interval for 0 .2 

Under certain circumstances, we are more interested in the confidence interval for the 
signal variance than the signal mean. For example, to determine the reliability of a 
spectral peak in a spectral density distribution (or spectrum), we need to know the 
confidence intervals for the population variance, a 2, based on our sample variance, s 2. 
To do this, we seek a new pivotal quantity. Recall from (3.5.13) that for N samples of a 
variable xi from a normal population, the expression 

1 N ( N -  1)Is 2 (3.8.7) 
0.'--~ Z (Xi -- ~ ) 2  __ 0 .2 

i=1 

is a X z variable with ( N -  1) degrees of freedom. Using this as a pivotal quantity, we 
can find upper and lower bounds X~ and X 2 for which 

[ N - 1  ~] 
P X 2 < a 2 1 s  2 < X  - 1 - a  (3.8.8) 

or, upon rearranging terms, 

- 1 ) s  2 
P ['(N X2 

(N - 1 )S 2] 
< 0"2 < X~r --- 1 - a  (3.8.9) 

Note that X 2 is a skewed function (Figure 3.9), which means that the upper and lower 
bounds in (3.8.9) are asymmetric; the point 1 -c~/2 rather than - a / 2  determines the 
point that cuts off a /2  of the area at the lower end of the chi-square distribution. 

From expression (3.8.9) we obtain the well-known 100(1 - a)% confidence interval 
for the variance rr 2 when sampled from a normal population 

(N - 1)8 2 (N --  1)S 2 
< o -2 < (3.8.10) 

xG, x -oi , 
where the subscripts a /2  and 1 - a / 2  characterize the endpoint values of the confi- 
dence interval and u - ( N - 1 )  gives the degrees of freedom of the chi-square 
distribution. The larger value of X2(= X2.. ~,) appears in the denominator of the lower 
endpoint for cr '~ while the smaller value of (= X~-<,I2,~,) is in the denominator of the 

a/2 

l.-a 

O ~jll .iw 
1 1 

X L Xu 

Figure 3.9. Location of the limts (9L, Ou)= (X~, X'~j) for a chi-square probability distribution. For 
c~ = 0.05, the cumulative area 1 - c~ corresponds to the 95% interval for the distribution. X 2 is a skewed 

function so that the upper and lower bounds are asymmetric. 
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upper endpoint for 0.2. As an example, suppose that we have u = 9 in our spectral 
estimate of the eastward component of current velocity and that the background 
variance of our spectra near a distinct spectral peak is s 2 = 10 cm2/s 2. What  is the 95% 
confidence interval for the variance? How big would the peak have to be to stand out 
statistically from the background level? (Details on spectral estimation can be found 
in Chapter  5.) In this case, c~/2 = 0.025 and 1 - ~ / 2  =0.975.  Turning to the 
cumulative distribution F(X 2) for 9 degrees of freedom in Appendix D (Table D.2), we 
find that X 2 - 2.70 for a cumulative integral F(c~/2 - 0.025) and that X 2 - 19.02 for a 

2 cumulative integral F(1 - c~/2 = 0.975). Thus, P(2.70 < ~L,=9 < 19.02)= 1 - c~ - 
0.95. Substituting N 1 - 9,s 2 10cm2/s 2 2 - - , X(~/2,~- 19.02 for the value that cuts 

2 - 2.70 for the value that off c~/2 of the upper end area under the curve and X1-~/2:~ - 
cuts off 1 - c~ /2  of the lower end area of the curve, (3.8.10) yields 

9(10 cmZ/s2)/19.02 < 0.2 < 9(10 cm2/s2)/2.70 

4.7 cm2/s 2 < 0 .2 < 33.3 cm 2/S 2 

Thus,  the true background variance will lie between 4.7 and 33.3 cm2/s 2. If a spectral 
peak has a greater range than these limits then it represents a statistically significant 
departure from background energy levels. 

In most instances, spectral densities are presented in terms of the log of the spectral 
density function versus frequency or log-frequency (see Chapter 5). Dividing through 
by s 2 in (3.8.10) and taking the log, yields 

log (~2/2, v ) <  log ((72/82) "( log ( N -  1 ) -  log (~-~ /2 ,~)  log (m 1) 

or, upon subtracting log ( N -  1) and rearranging the inequality 

log log (or2/s 2 ) [ < log X 2 log  1Xl-(~/2,~,/ ( ( N -  1 ) -  / a./2,1.,I \ - ] \ / J 

The range R of the variance is then 

X 2 ( 1-off2, v) R - l o g ( ~ / 2 , ~ ) - l o g  X 2 (3.8.11) 

while the pivot point po of the interval is 

Po = log(N - 1) - log (0.2/$2) (3.8.12) 

If we assume that the measured background value of  s 2 is a good approximation to 0 "2, SO 
that o 2/s 2 -- 1, then Po = l o g ( N -  1). The ranges between the maximum value and Po, 

and the minimal value and Po, are log (X2/2,~) - Po and Po - log (X~-(~/2. ~), respectively. 
Returning to our previous example for the 95% confidence interval, we find that 

log (2.70) < log (9) < log (19.02), 0.43 < 0.95 < 1.28 

giving a range R - 0.848 with the pivot point at Po - 0.95. 

3 . 8 . 4  G o o d n e s s - o f - f i t  t e s t  

When the set of outcomes for an experiment is limited to two outcomes (such as 
success or failure, on or off, and so on), the appropriate test statistic for the 
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distribution is the binomial variable. However, when more than two outcomes are 
possible, the preferred statistic is the chi-square variable. In addition to providing 
confidence intervals for spectral estimates and other measurement parameters, the 
chi-square variable is used to test how closely the observed frequency distribution of a 
given parameter corresponds to the expected frequency distribution for the parameter. 
The expected frequencies represent the average number of values expected to fall in 
each frequency interval based on some theoretical probability distribution, such as a 
normal distribution. The observed frequency distribution represents a sample of 
values drawn from some probability distribution. What we want to know is whether 
the observed and expected frequencies are similar enough for us to conclude that they 
are drawn from the same probability function (the "null hypothesis"). The test for this 
similarity using the chi-square variable is called a "goodness-of-fit" test. 

Consider a sample of N observations from a random variable X with observed 
probability density function po(X). Let the N observations be grouped into K intervals 
(or categories) called class intervals, whose graphical distribution forms a frequency 
histogram (Bendat and Piersol, 1986). The actual number of observed values that fall 
within the ith class interval is denoted by fi, and is called the observed frequency in the 
ith class. The number of observed values that we would expect to fall within the ith 
class interval if the observations really followed the theoretical probability distri- 
bution, p(X), is denoted Fi, and is called the expected frequency in the ith class interval. 
The difference between the observed frequency and the expected frequency for each 
class interval is given byJ~ - F i .  The total discrepancy for all class intervals between 
the expected and observed distributions is measured by the sample statistic 

K 
X2 _ ~ (ft -- Fi)  2 (3.8 13) 

i=1 f i  " 

where division by Fi transforms the sum of the squares into the chi-square-type 
variable, X 2. 

The number of degrees of freedom, u, for the variable X 2 is equal to K minus the 
number of different independent linear restrictions imposed on the observations. As 
discussed by Bendat and Piersol (1986), one degree of freedom is lost through the 
restriction that, if K -  1 class intervals are determined, the Kth class inte'rval follows 
automatically. If the expected theoretical density function is normally distributed 
then the mean and variance must be computed to allow comparison of the observed 
and expected distributions. This results in the loss of two additional degrees of 
freedom. Consequently, if the chi-square goodness-of-fit test is used to test for 
normality of the data, the true number of degrees of freedom for X 2 is u = K -  3. 

Formula (3.8.13) measures the goodness-of-fit betweenfi and Fi as follows: when the 
fit is good (that is, J} and Fi are generally close), then the numerator of (3.8.13) will be 
small and the hence the value of X 2 will be low. On the other hand, iffi and Fi are not 
close, the numerator of (3.8.13) will be comparatively large and the value o f X  2 will be 
large. Thus, the critical region for the test statistic X 2 will always be in the upper tail 
of the chi-square function because we wish to reject the null hypothesis whenever the 
difference between fi and Fi is large. More specifically, the region of acceptance of the 
null hypothesis (see Section 3.14) is 

X 2 <_ X,2:v (3.8.14) 
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where the value of X2.~, is available from Appendix D (Table D.2). If the sample value 
X 2 is greater than X~;~, the hypothesis that p(X) - P o ( X )  is rejected at the level of 
significance. If X 2 is less than or equal to X2; ~,, the hypothesis is accepted at the o~ level 
of significance (i.e. there is a 100~% chance that we are wrong in accepting the null 
hypothesis that our data are drawn from a normal distribution). For example, suppose 
our analysis involves 15 class intervals and that the fit between the 15 estimates of J~ 
and Fi (where Fi is normally distributed) yields X 2 - 23.1. From tables for the 
cumulative chi-square distribution, F ( X )  - p (x  > X2~;~,), we find that p ( X  2 > 21.03) - 
0.05 for r, = K - 3 = 12 degrees of freedom. Thus, at the ~ - 0.05 level of significance 
(95% certainty level) we cannot accept the null hypothesis that the observed values 
came from the same distribution as the expected values. 

Chi-square tests for normality are typically performed using a constant interval 
width. Unless one is dealing with a uniform distribution, this will yield different 
expected frequency distributions from one class interval to the next. Bendat and 
Piersol recommend a class interval width of zkx ~ 0.4s, where s is the standard 
deviation of the sample data. A further requirement  is that the expected frequencies in 
all class intervals be sufficiently large that X 2 in (3.8.13) is an acceptable ap- 
proximation to X2;~,. A common recommendat ion is that Fi > 3 in all class intervals. 
When testing for normality, where the expected frequencies diminish on the tails of 
the distribution, this requirement  is attained by letting the first and last intervals 
extend to - ~  to + e~, respectively, so that F~, FK > 3. 

As an example of a goodness-of-fit test, we consider a sample of N = 200 surface 
gravity wave heights measured every 0.78 s by a Datawell waverider buoy deployed off 
the west coast of Canada during the winter of 1993-1994 (Table 3.8.1). The wave 
record spans a period of 2.59 min and corresponds to a time of extreme (5 m high) 
storm-generated waves. According to one school of thought (e.g. Phillips et al., 1993), 

Table 3.8.1. Wave heights (mm) during a period of anomalously high waves as measured by a Datawell 
waverider buoy deployed in 30 m depth on the inner continental shelf of Vancouver Island, British 
Columbia. The original N - 200 time-series values have been rank ordered. The upper bounds of the K- 
class intervals have been underlined. (Courtesy, Diane Masson) . . . . .  

4636 4840 4901 4950 4980 5014 5034 5060 5095 5130 
4698 4842 4904 4954 4986 5014 5037 5066 5095 5135 
4702 4848 4907 4955 4991 5015 5037 5066 5096 5135 
4731 4854 4907 4956 4994 5017 5038 5069 5102 5145 
4743 4856 4908 4956 4996 5020 5039 5069 5103 5155 
4745 4867 4914 4956 4996 5020 5040 5071 5104 5157 
4747 4867 4916 4959 4996 5021 5040 5072 5104 5164 
4749 4870 4917 4960 4997 5023 5044 5073 5104 5165 
4773 4870 4923 4961 4998 5024 5045 5074 5106 5166 
4785 4874 4925 4963 5003 5025 5045 5074 5110 5171 
4793 4876 4934 4964 5006 5025 5047 5074 5111 5175 
4814 4877 4935 4964 5006 5025 5048 5078 5115 5176 
4817 4883 4937 4966 5006 5025 5050 5079 5119 5177 
4818 4885 4939 4966 5006 5028 5051 5080 5119 5181 
4823 4886 4940 4970 5006 5029 5052 5081 5120 5196 
4824 4892 4941 4971 5010 5029 5053 5086 5121 5198 
4828 4896 4942 4972 5011 5029 5057 5089 5122 5201 
4829 4897 4942 4974 5011 5030 5058 5091 5123 5210 
4830 4898 4943 4977 5012 5031 5059 5093 5125 5252 
4840 4899 4944 4979 5012 5032 5059 5094 5127 5299 
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extreme wave events in the ocean are part of a Gaussian process and the occurrence of 
max imum wave heights is related in a linear manner  to the statistical distr ibution of 
the sur rounding  wave field. If this is true, then the heights of high-wave events relative 
to the background seas should follow a normal frequency distribution. To test this at 
the c~ = 0.05 significance level, K = 10 class intervals for the observed wave heights 
were fitted to a Gaussian probabil i ty distribution. The steps in the goodness-of-fit test 
are as follows: 

(1) Specify the class interval width Ax and list the upper  limit of the standardized 
values, z~, of the normal dis tr ibut ion that correspond to these values (as in Table 
3.8.2). Commonly  Ax is assumed to span 0.4 standard deviations, s, such that 
Ax ~, 0.4s; here we use Ax ~ 0.5s. For Ax = 0.4s, the values ofz~ we want are (..., 
-2 .4 ,  -2 .0 ,  . . . ,  2.0, 2.4, ...) while for Ax = 0.5s, the values are (..., -2 .5 ,  -2 .0 ,  ..., 
2.0, 2.5, ...). 

(2) De te rmine  the finite upper  and lower bounds for z,~ from the requirement  that Fi 

> 3. Since Fi = N P i  (where N - 200 and Pi is the normal probabili ty distr ibution 
for the ith interval), we require P > 3 / N  = 0.015. From tables of the s tandardized 
normal  density function, we find that P > 0.015 implies a lower bound z~ = -2 .0 ,  
and an upper  bound z~ = +2.0. Note that for a larger sample, say N = 2000, we 
have P > 3/2000 = 0.0015 and the bounds become +2.8 for the interval 
Ax = 0.4s and + 2.5 for the interval Ax = 0.5s. 

(3) Calculate the expected upper  limit, x = sz~ + ~ (mm), for the class intervals and 
mark  this limit on the data table (Table 3.8.1). For each upper  bound, z~, in Table 
3.8.2, find the corresponding probabili ty density value. Note that these values 
apply to intervals so, for example,  P ( - 2 . 0  < x  < - 1 . 5 )  = 0 . 0 6 6 8 - 0 . 0 2 2 8  = 
0.044; P(2.0 < x < ~ )  = 0.0228. 

(4) Using the value of P, find the expected frequency values Fi - NPi .  The observed 
frequency fi is found from Table 3.8.1 by counting the actual number  of wave 
heights lying between the marks made in step 3. Complete  th," ,able and calculate 
X 2. Compare  to X2;~. 

Table 3.8.2. Calculation table for goodness-of-fit test for the data in Table 3.8.1. The number of intervals 
has been determined using an interval width A x  = 0.55, with z~ in units of 0.5 and requiring that Fi > 
3. N = 200, -~ (mean) = 4997.6 mm, s (standard deviation) = 115.1 mm, and u (degrees of freedom) = 
K - 3 = 7  

Class Upper limit of data interval ( F i - f i )  2 
interval z,, x = sz,, 4- ~ Pi Fi - NPi f, Fi - f, Fi 

1 -2.0 4767.4 0.0228 4.6 8 3.4 2.51 
2 -1.5 4825.0 0.0440 8.8 8 0.8 0.07 
3 - 1.0 4882.5 0.0919 18.4 16 2.4 0.31 
4 -0.5 4940.1 0.1498 30.0 23 7.0 1.63 
5 0 4997.6 0.1915 38.3 33 5.3 0.73 
6 0.5 5055.2 0.1915 38.3 48 9.7 2.46 
7 1.0 5112.7 0.1498 30.0 35 5.0 0.83 
8 1.5 5170.2 0.0919 18.4 18 0.4 0.01 
9 2.0 5227.8 0.0440 8.8 9 0.2 0.00 

10 ~ ~ 0.0228 4.6 2 2.6 1.47 
Totals 1.0000 200 200 10.02 
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In the above example, X 2 - 10.02 and there are u - 7 degrees of freedom. From 
Table A.3, we find P(X 2 > X2;v) -  P(X 2 > )(.2 0.05-7) = 14.07. Thus, at the a = 0.05 
level of significance (95% significance level), we can accept the null hypothesis that 
the large wave heights measured by the waverider buoy had a Gaussian (normal) 
distribution in time and space. 

3.9 S E L E C T I N G  T H E  S A M P L E  SIZE 

It is not possible to determine the required sample size N for a given confidence 
interval until a measure of the data variability, the population standard deviation, or, is 
known. This is because the variability of X depends on the variability of X. Since we 
do not usually know a priori the population standard deviation (the value for the true 
population), we use the best estimate available, the sample standard deviation, s. We 
also need to know the frequency content of the data variable so that we can ensure that 
the N values we use in our calculations are statistically independent samples. As a 
simple example, consider a normally distributed, continuous random variable, Y, with 
the units of meters. We wish to find the average of the sample and want it to be 
accurate to within +5 m. Since we know that approximately 95% of the sample means 
will lie within +2ay  of the true mean #, we require that 2ay - 5 m. Using the central 
limit theorem for the mean, we can estimate ay by 

O" ~ y -  
v/N 

so that 2a/v/N = 5, or N = 4a2/25 (assuming that the N observations are statistically 
independent). If a is known, we can easily find N. 

When we don't know cr, we are forced to use an estimate from an earlier sample 
within the range of measurements. If we know the sample range, we can apply the 
empirical rule for normal distributions that the range is approximately 4a and take 
one-fourth the range as our estimate of a. Suppose our rangeAn the above example is 
84 m. Then, a = 21 m and 

N = 4a2/25 = (4)(21 m)2/'(25 m 2) = 70.56 ,~ 71 

This means that, for a sample of N = 71 statistically independent values, we would be 
95% sure (probability - 0.95) that our estimate of the mean value would lie within 
+2ay = +5 m of the true mean. 

One method for selecting the sample size for relatively large samples is based on 
Chebyshev's theorem known as the "weak law of large numbers". Letf(x) be a density 
function with mean # and variance a 2, and let ~N be the sample mean of a random 
sample of size N from f(x). Let e and 5 be any two specified numbers satisfying 
r > 0 and 0 < 5 < 1. If N is any integer greater than (o2/e2)5 then 

P[-e < XN--~Z < e] ~ 1 - 6  (3.9.1) 

To show the validity of condition (3.9.1), we use Thebyshev's inequality 

Pig(x) > k] > E[g(x)] (3.9.2) 
- - k 

for every k > 0, random variable x, and nonnegative function g(x). An equivalent 
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Pig(x) < k] > 1 E[g(x)] - k (3.9.3) 

Let g(x)  - (XN -- # < c) 2 

P [ - e  < -xJ -- # < e] = P[[s -- #l < e] 

and k = e 2, then 

- P[I~N - #12< C 2] > 1 - -  

0.2 
= 1 - ~ - j >  1 - 6  

C 2 
(3.9.4) 

For 8 > cr2/Nc 2 or N > cr2/6c 2, the latter expression becomes 

P[[~N--#I  < e] > I - 6  (3.9.5) 

We illustrate the use of the above relations by considering a distribution with an 
unknown mean and variance cr 2 = 1. How large a sample must be taken in order that 
the probability will be at least 0.95 that the sample mean, XN, will lie within 0.5 of the 
true population mean? Given are: 0.2_ 1 and e -  0.5. Rearranging the inequality 
(3.9.5) 

8 > 1 --P[[~N -- #l < 0.5] = 1 -- 0.95 -- 0.05 

Substituting into the relation N > (0.2/&2)= 1/(0.05)(0.5)2 tells us that N > 80 
independent samples. 

3 . 1 0  C O N F I D E N C E  I N T E R V A L S  F O R  A L T I M E T E R  B I A S  
E S T I M A T E S  

As an example of how to estimate confidence limits and sample size, consider an 
oceanographic altimetric satellite where the altimeter is to be calibrated by repeated 
passes over a spot on the earth where surface-based measurements provide a precise, 
independent measure of the sea surface elevation. A typical reference site is an off- 
shore oil platform having sea-level gauges and a location system, such as the multi- 
satellite global positioning system (GPS). For the TOPEX/POSEIDON satellite one 
reference site was an oil platform in the Santa Barbara channel off southern California 
(Christensen et al., 1994). Each pass over the reference site provides a measurement of 
the satellite altimeter bias which is used to compute an average bias after repeated 
calibration observations. This bias is just the difference between the height measured 
by the altimeter and the height measured independently by the in situ measurements 
at the reference site. If we assume that our measurement errors are normally 
distributed with a mean of zero, then the uncertainty of the true mean bias, ab, is 

0.b - Z Sb / x/'N 

where z is the standard normal distribution, sb is the estimated standard deviation of 
the measurements,  and N is the number  of measurements (i.e. the number of 
calibration passes over the reference site). 
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Suppose we are required to know the true mean of the alt imeter bias to within 2 cm, 
and that we estimate the uncertainty of the individual  measurements  to be 3 cm. We 
then ask: "Wha t  is the number  of independent  measurements  required to give a bias 
of 2 cm at the 90%, 95%, and 99% confidence intervals?" Using the above formulation 
for the s tandard error  we find 

N - (z~/2Sb/ab) 2 (3.10.1) 

from which we can compute  the required sample size. As before, the parameter  a 
refers to the chosen significance level. Now orb = 2 cm (required) and sb - 3 cm 
(estimated), so that we can use the s tandard normal  table for z,~/2 = N(O, 1) in the 
appendix  to obtain the values shown in Table 3.10.1. If we require the true mean to be 
1.5 cm instead of 2.0 cm, the values in Table 3.10.1 become those in Table 3.10.2. 

Finally, suppose the satellite is in a 10-day repeat orbit so that we can only collect a 
reference measuremen t  every 10 days at our ground site; we are given 240 days to 
collect reference observations. What  confidence intervals can be achieved for both of 
the above cases if we assume that only 50% of the calibration measurements  are 
successful and that the 10-day observations are statistically independent?  We can, in 
general,  write the confidence intervals as 

P ( - c  < z < c) = a,  a n d P ( z < c ) = ( a + l ) / 2  

Now, since we have only one calibration measurement  every 10 days for 50% of 240 
days we have 

c - (0.5)(240 days)(1 measu remen t /10  days) 

= 12 measurements /year  

Referring to the above tables, we see that for the first case (Table 3.10.1), where the 
mean bias was required to be 2.0 cm we can achieve the 95% interval; for the case 
where the mean bias is restricted to 1.5 cm (Table 3.10.2), only the 90% confidence 
interval is possible. 

Table 3.10.1. Calculation of the number of satellite altimeter observations required to attain a given level 
of confidence in elevation using the relation (3.10.1)for ~b = 2 cm and Sb = 3 cm 

Confidence Standard normal Exact number Actual number 
level (a) value (z~) of observations (N) of observations 

90% 1.645 6.089 7 
95% 1.960 8.644 9 
99% 2.576 14.931 15 

. . . . . . . .  , ,  . . . . . . .  

Table 3.10.2. Calculation of the number of satellite altimeter observations needed for a given level of 
confidence in sea level elevation using the equation (3.10.1)for ~ = 1.5 cm and sb = 3 cm 

Confidence Standard normal Exact number Actual number 
level (a) value (z~) of observations (N) of observations 

90% 1.645 10.82 11 
95% 1.960 15.37 16 
99% 2.576 26.54 27 
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Now that we have introduced methods to calculate confidence intervals for our 
estimates of # and 0.2, we need procedures to estimate these quantities themselves. 
There are many different methods we could use but space does not allow us to discuss 
them all. We first introduce a very general technique, known as min imum variance 
unbiased est imation (MVUE), and then later discuss a popular  method called the 
max imum likelihood method which leads to MVUE estimators. We will also discuss 
one of the oldest methods for finding point estimates, the method of moments. 

Before introducing the MVUE procedure, we need to define two terms: sufficiency 
and likelihood. Let Xl, x2, .. . ,  XN be a random sample from a probability distribution 
with an unknown statistical parameter ,  6/(mean, variance, etc.). The statistic U - g(x~, 
x2, . . . ,  Xx) is said to be sufficient for 6/if the conditional distribution Xl, x2, . . . ,  XN, 
given U, does not depend on ~/. In other words, once U is known, no other combination 
of Xl, x2, . . . ,  XN provides additional information about ~. This tells us how to check if 
our statistic is sufficient but does not tell how to compute the statistic. 

To define likelihood, letyl,Y2, ... ,YN be sample observations of random variables Y1, 
Y2, . . . ,  YN. For continuous variables, the likelihood L(yl, Y2, . . . ,  YN) is the joint 
probabili ty densityf(yl ,Y2, ... ,YN) evaluated at the observations, y/. Assuming that the 
Yi are statistically independent  

L(Yl,Y2, ...,YN) =f(Yl,Y2, ...,YN) =f(Yl)f(Y2).. . f(YN) (3.11.1) 

where f(Yi), i = 1, 2, . . . ,  N, is the probabil i ty density function (PDF) for the random 
variable Yi. 

As an oceanographic example, consider a record of daily-average current velocities 
obtained using a single current meter  moored for a period of one month (N = 30 
days). Show that the monthly  mean velocity, V, is a sufficient statistic for the popu- 
lation mean if the variance is known (in this case, estimated from the range of current 
values). Since the daily velocities are average values of shorter-term current velocity 
measurements  (e.g. 30 min values), we can invoke the central limit theorem to con- 
clude that the daily velocities are normally distributed. Hence the probability density 
function can be written as 

f ( V ) -  1 [ 1 (V_#)2 ] 
0.(2rr) 1/2 exp - 

We can write the likelihood L of our sample as 

L-f(V1, V2, ..., V30)=f(V1)f(V2)...f(V30) 
1 [ 1 2j 
- ~(2~_)1/2 exp ~ ( V 1  ~) 

1 I 1 1 x exp - (V2 _ # ) 2  
o.(271_)1/2 ~2 

1 [ 1 2] 
"'" 0.(2rr)1/2 exp - ~ (1730 - #) 

1 1 ] 
- [~(2~r)]15 exp 23ocr6 o . (Vi - #)2 
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Because a is known from our range of current velocities then L is a function of V and # 
only. Hence, V is a sufficient statistic for # the population mean. 

3.11.1 Minimum variance unbiased estimation 

For random variables Y1, Y2, . . . ,  YN, with probability density function, f(y), and 
unknown parameter 0, let one set of sample observations be (x~, x2, . . . ,  XN) and 
another be (Yl,Y2, ... ,YN).  The ratio of the likelihoods of these two sets of observations 
can be written as 

L(x l ,  x2, ..., xN) 

L(yl ,  y2, ... , YN) 
(3.11.2) 

In general, this ratio will not be a function of 0 if, and only if, there is a function g(xl, 
x2, ... ,XN) such that g(xl, x2, ... ,XN) = g(Yl,Y2, ... ,YN) for all choices ofx andy.  If such 
a function can be found, it is the minimum sufficient statistic for 0. Any unbiased 
estimator that is a function of a minimal sufficient statistic will be an MVUE; this 
means that it will possess the smallest  possible variance among the unbiased 
estimators. 

We illustrate what we mean with an example. Let x~, x2, ..., xn be a random sample 
from a normal population with the unknown parameters # and cr 2. We want to find the 
MVUE of # and ~2. Writing the likelihood ratio we have 

L(x l ,  x2, ..., xn) f ( x l ,  x2, ..., xn) 

Z(yl,Y2, ...,Yn) f(Yl,Y2, ...,Yn) 
1 [ 1N j 

~x/,2~reXp - ~ ~ ( X i  - -  ~)2 
i=1 1 [ ] 

av/2~.exp - ~ ~ (Yi - #)2 
i=1 

= exp -~7~2 ( x i -  #)2 _ ~_, ( Y i -  , )2  
i=1 i=1 

=exp{--~--~[(i=~lX2--~=lY2 ) --2#(i=~lxi--~=lYi)] } 

(3.11.3) 

For this ratio to be independent of #, we must have 

N N 

Xi ~- ~-~Yi (3.11.4) 
i=1 i=1 

for the ratio to be independent of a2, requires both (3.11.4) as well as 

N N 

~--~x~ = ~-'~y~ (3.11.5) 
i=1 i=1 

Thus, both ~ xi and Y~ x~ are minimum sufficient statistics for # and a 2. Since 2 is an 
unbiased estimate of # 
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s 2 1  N 1 ( Z - N 2 2 )  (3.11.6) 
- -  N - 1 Z ( X i  - 2) 2= N---Z- ~ 

i=1 

is an unbiased estimate of 0 "2. Since both ~ and s z are functions of the minimal 
sufficient statistics 

N N 

ZXi a n d  E x ~  
i=1 i=1 

as expressed by (3.11.4) and (3.11.5), they also are MVUEs for # and a 2. 

3.11.2 Method of moments  

As suggested earlier, the method of moments is one of the oldest methods for 
parameter estimation. It is simple and straightforward to apply. Recall that the kth 
moment of a random variable Y, taken about the origin, is 

#'k - E[ Yk] (3.11.7) 

and the corresponding sample moment is 

, 1 N 
mh = ~ Z Y ~  

i=1 

(3.11.8) 

The method of moments is based on the assumption that sample moments should 
provide good estimates of the corresponding population moments (i.e. m~ is a good 
estimate of #~). Thus we choose our estimates as those parameter values which are 
solutions of the equations # ~ -  m~, k = 1, 2, ..., r where r is the number of para- 
meters. 

We again illustrate with an example. A random sampley~,y2, ... ,YN is selected from 
a population with a uniform PDF over the interval (0, 0), where 0 is unknown. We use 
the method of moments to estimate 0. The first moment of the population is 
~1 = /.Z _ _ . t  0/2 (see Appendix C). The corresponding first sample moment is 

m' - 1 ~ y i  = ~ 
i=1 

If we equate the moments and solve for 0 

0/2 = y ,  or t~ = 2y 

Thus, 0 has a moment estimate of 2.~. 
We remark, that while the method of moments is straightforward to apply, the 

resulting estimates are not minimal sufficient statistics. In addition, these estimates 
may not even be unbiased. The primary advantage of this procedure is that it often 
yields results when others do not. 
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3.11.3 Maximum likelihood 

The procedure introduced earlier to compute the MVUE is complicated by the fact 
that one must find some function of the minimal sufficient statistic that gives the 
sought-after target parameter. Finding this function is, in general, a matter of trial 
and error. We then introduced the method of moments which, while it is easy to apply, 
yields estimates which may not be optimal. A more sophisticated procedure, the 
maximum likelihood method, often leads to the MVUE. 

The formal statement of this method is quite simple. Choose as estimates those 
parameter values that maximize the likelihood L0'I, Y2, . . . ,  YN). A simple example 
using discrete variables helps to illustrate the logic in the maximum likelihood 
method. Assume we have a bag containing three marbles. The marbles can be black or 
white. We randomly sample two of the three and find that they are both black. What is 
the best estimate of the total number of black marbles in the bag? If there are actually 
two black and one white in the bag, the probability of sampling two black marbles is 

= 1 / 3  (32) 
where, as in Section 3.3, the binomial expression is 

r - NPr/ !- N ! / [ r t ( N -  r)!] (3.11.9) 

and NPr is the number of permutations of N discrete variables sampled r at a time. In 
the above expression 

indicates the first sample of two marbles, with both being black. The next term is the 
remaining unsampled marble (hence the 0 in the denominator) if it were white. Now if 
there are three black marbles in the bag the probability of sampling two blacks is 

( ~ ) ( 0 0 )  = 1 

On this basis, it seems reasonable to choose three as the estimate of the number of 
black marbles in the bag in order to maximize the probability of the observed sample. 

A more complex example can be used to illustrate the application of this method to 
our estimates of the mean, #, and variance, ~2, for a normal population. Again, let y~, 
Y2, ... ,YN be a random sample from a normal population with parameters # and cr 2. We 
want to find the maximum likelihood estimators of # and cr 2. Note we used this same 
example for our discussion of the method of moments. To find the maximum 
likelihood, we need to write the joint PDF of the independent observationsyl,Y2, ... ,Yx 
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s2 - 1 N 
- X - 1 ~ (Yi _.~)2 (3 .11.15)  

i=1 

Since the Maximum Likelihood Method has widespread application, we present 
another simple example to illustrate its use. Let Yl, Y2, . . . ,  YN, be a random sample 
taken from a uniform distribution withf(yi)  = 1/0 = constant, 0 <_Yi <_ 8, and i - 1, 
2, ..., N. We want to find the maximum likelihood estimate of 8. Again, we write the 
likelihood, L, as the joint probability function 

L =f(Yl ,y2 ,  ...,YN) =f(Yl)f(Y2)...f(YN) = (1/8)(1/0). . .  (1/8) 

= (1/0) N 
(3.11.16) 

In this case, L is a monotonically decreasing function of O and nowhere is dL/dO = 0. 
Instead, L increases monotonically as 0 decreases and must be greater than or equal to 
the largest sample value, YN.L is, therefore, not an unbiased estimate of ft. It can be 
adjusted to 

0 = (  f + l  N )YN (3.11.17) 

which is unbiased. We note that if any statistic U can be shown to be a sufficient 
statistic for estimating 0 then the maximum likelihood estimator is always some 
function of U. If this maximum likelihood estimate can be found, and then adjusted to 
be unbiased, the result will generally be an MVUE. 

To demonstrate the application of the maximum likelihood approach, assume that a 
random sample of size N is selected from the normal distribution (equation (3.5.2)) 
with # and cr 2 as the mean and variance for each xi (where we assume that the xi values 
are independent). We ask: If 0 = (01, 02)=  (#, o 2) is the parameter space for the 
probability density function f (xl ,  x2, . . . ,  Xx), then what is the. likelihood function? 
Also, find the maximum likelihood estimator 01 of 01 which maximizes the likelihood 
function and find the maximum likelihood estimator ~J2 which maximizes the likeli- 
hood function 81. We first write the PDF as 

f (~, -0) = (�89 rra2) x/2 = exp 1 ~ (xi - #)2 
i -1  

} = H v/(27ro.)exp[-(xi- #)2/a2] : L(~,-0) 
i=1 

which is the likelihood function written in terms of the product, H, of the exponential. 
Taking the natural log of the above expression with respect to our estimated para- 
meter, 01, and setting it equal to zero to find the maximum, we get 

N N 1 N 
In (L) = - ~-In (27r) - ~-In (o a) - ~-fla 2 ~ (xi - -  ~ ) 2  

i=1 

where a > 0 and - c ~  < # < oo. The derivative of this function with respect to 81 
(which is #) is 
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OL 

O~ 

1 n 1 N 

20-2 Z (xi - #) ( -2 )  - ~  Z (Xi - I,Z) -- 0 
i=1 i=1 

so that our estimate of # is 1 N 

Furthermore, the maximum likelihood estimator of 02 (which is 0-2) is given by 

OL N 
00-2 20-2 

(-1)~--~ ( X i -  ~)2 - - ~ 2  Z ( X i -  ~)2 _ N - 0 
2~ i=1 i=1 

which yields the estimator 

1 N 
o 2 ( x ; -  

i-1 

For a normally distributed oceanographic data set, we can readily obtain maximum 
likelihood estimates of the mean and variance of the data. However, the real value of 
this technique is for variables that are not normally distributed. For example, if we 
examine spectral energy computed from current velocities, the spectral values have a 
chi-square distribution rather than a normal distribution. If we follow the maximum 
likelihood procedure, we find that the spectral values have a mean of 1,,, the number of 
degrees of freedom, and a variance of 21,,. These are the maximum likelihood 
estimators for the mean and variance. This example can be used as a pattern for 
applying the maximum likelihood method to a particular sample. In particular, we 
first determine the appropriate PDF for the sample values. We then find the joint 
likelihood function, take the natural logs and then differentiate with respect to the 
parameter of interest. Setting this derivative equal to zero to find the maximum 
subsequently yields the value of the parameter being sought. 

3 . 1 2  L I N E A R  E S T I M A T I O N  ( R E G R E S S I O N )  

Linear regression is one of a number of statistical procedures that fall under the general 
heading of linear estimation. Since linear regression is widely treated in the literature 
and is available in many software packages, our primary purpose here is to establish a 
common vocabulary for all readers. In our previous discussion and examples, we 
assumed that the random variables Y~, Y2, ..., YN were independent (in a probabilistic 
sense) and identically distributed, which implies that E[Yi] = # is a constant. Often 
this is not the case and the expected value E[Yi] of the variable is a function of some 
other parameter. We now consider the values y of a random variable, Y, called the 
dependent variable, whose values are a function of one or more nonrandom variables 
xl, x2, ... , XN, called independent variables (in a mathematical, rather than proba- 
bilistic sense). 
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If we model our random variable as 

y = ElY] + ~ = bo + b l x  + e (3.12.1) 

we invariably find that the points y are scattered about the regression line E[y] = bo + 
blX. The random variable e in the right-hand term of (3.12.1) gives the departure from 
linearity and has a specific PDF with a mean value #~ = 0. In other words, we can 
think ofy as having a deterministic part, E[,v], and a random part, e, that is randomly 
distributed about the regression line. By definition, simple linear regression is limited 
to finding the coefficients bo and bl. If N independent variables (x l, x2, . . . ,  XN) are 
involved in the variability of each value y, we must deal with multiple linear regression. 
In this case, (3.12.1) becomes 

y = bo + blx~ + b2x2 + ... -+- bNXN + C (3.12.2) 

3 . 1 2 . 1  M e t h o d  o f  l e a s t  s q u a r e s  

One of the most powerful techniques for fitting a dependent model parameter y to 
independent (observed input) variables xi (i - 1, 2, ..., N) is the method of  least squares. 
We apply the method in terms of linear estimation and will later readdress the topic in 
terms of more general statistical models. (Note: by "linear" we mean linear in the 
parameters bo, bl, . . . ,  bN. Thus,y  = bo + blx~ + e is linear but y - bo + sin (blXl) + c is 
not.) We begin with the simplest case, that of fitting a straight line to a set of points 
using the "best" coefficients bo, b~ (Figure 3.10). In a sense, the least squares 
procedure does what we do by eye--i t  minimizes the vertical deviations (residuals) of 
data points from the fitted line. Let 

1 4 - -  
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R e g r e s s i o n  o f  y on x 
y = 5 . 0 3 3 3  + 0 . 8 5 9 4 x  r = 0 .87  
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(3.12.3) 
Regress ion  o f  z o n  x 

z = 4 ~ - 0 . 9 4 3 6 x  r = - 0 . 9 2  
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0 2 4 6 8 10 12 

x 

Figure 3.10. Straight line (linear regression)fits to the sets of points in Table 3.12.1 using the "best'" 
coefficients bo, bl. (a) Regression of y on x, for which (bo, bl) - (5.0333, 0.8594); and (b) regression of z 

on x, for which (bo, bl) = (4.0, -0.9436). r is the correlation coefficient. 
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where 

.Yi -- bo + bl)Ci (3.12.4) 

is our estimator for the deterministic portion of the data and r is the residual or error. 
To find the coefficients bo, bl we need to minimize the sum of the squared errors (SSE) 
where SSE is the total variance that is not explained (accounted for) by our linear 
regression model given by (3.12.3) and (3.12.4) 

N N N 

SSE - y ]  e~ - y ~  (Yi - - .~ i )  2 - -  ~ [Yi - (bo + blxi)] 2 (3.12.5a) 
i=1 i=1 i=1 

: S S T -  SSR (3.12.5b) 

in which 

N N 

S S T  - Z (Yi _ y ) 2  a n d  SSR- ~ C~ i _..~)2 (3.12.5c) 
i=1 i -I  

Here, SST (sum of squares total) is the variance in the data and SSR (sum of squares 
regression) is the amount of variance explained by our regression model. Mini- 
mization amounts to finding those coefficients that minimize the unexplained 
variance (SSE). Taking the partial derivatives of (3.12.5a) with respect to bo and bl and 
setting the resultant values equal to zero, the minimization conditions are 

0SSE 0SSE 
~ = 0 ;  ~ = 0  (3.12.6) 

0b0 0hi 

Substituting (3.12.5a) into (3.12.6), we have for bo 

OSSE O { N } N 
~Obo = Ob---~ ~ [Yi - (bo + blxi)] 2 -- -2  ~ [Yi - (bo + blxi)] 

i=1 i=1 

: -2  yi - Nbo - bl xi - 0 
\ i = 1  i=1 

(3.12.6a) 

Now for bl 

0SSE 
Obl 

{N } N 
__ ~0 Z [Yi -- (bo -[- blxi)] 2 - - 2  ~ [Yi (bo -[- blxi] 

Obl i=l /=1 

= -2  x i Y i -  bo ~ x i -  b l Z x2 - 0 
i=1 i=1 i=1 

(3.12.6b) 

Once the mean values of y and x are calculated, these least squares equations can be 
solved simultaneously to find an estimate of the coefficient bl (the slope of the 
regression line); this is then used to obtain an estimate of the second coefficient, bo 
(the intercept of the regression line). In particular 
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N [N N N N ]  
(Xi -- X)(Yi -- Y)  ~_. xiYi -- ~_, xi ~"]Yi 

Vf'l = i=1 __ i=1 i=1 i=1 

2 (Xi -- X) 2 E X~ -- Xi 
i=1 i=1 i=1 

(3.12.7a) 

/~0 =.g -/~1~ (3.12.7b) 

Several features of the regression values are worth noting. First, if we substitute the 
intercept b0 = Y - blX into the line.9 = bo + blx, we obtain 

.9 =.~ + bl (x - ~) 

As a result, whenever x = ~, we have 39 =.g. This means: (1) That  the regression line 
always passes through the point (~,y); and (2) that because the operation 
OSSE/Obo -- 0 minimizes the error ~[~ Ci - -  0 ,  the regression line not only goes through 
the point of averages (~, y) but it also splits the scatter of the observed points so that 
the positive residuals (where the regression line passes below the true point) always 
cancel exactly the negative residuals (where the line passed above the true point). The 
sample regression line is therefore an unbiased estimate of the population regression 
line. 

To summarize  the linear regression procedure, we note that: 

(1) For each selected x ( independent  variable) there is a distribution ofy from which 
the sample (dependent variable) is drawn at random. 

(2) The population ofy  corresponding to a selected x has a mean # that lies on the 
straight line lz = bo + blx, where bo and bl are regression parameters. 

(3) In each population, the standard deviation of y about its mean, bo + blX, has the 
same value (Sxy = s~,y = bo + blX + e). Note that e is a random variable drawn 
from a normal population w i t h / ~ -  0 and s - Sxy. 

Table 3.12.1. Values for dependent variables Yi, zi as functions of xi. The estimated values ~j and i are 
derived from the linear regression analysis. Formulae at the bottom of the table are the total sum of 
squares (SST), sum of squares for the regression (SSR) and the sum of squares of the errors (SSE) to be 
derived in our regression analysis for N = I0 
. . . . . .  , . . . .  

Xi Yi fli Zi .Yi 

1.0 6.7 5.9 3.9 3.1 
2.0 4.7 6.8 1.5 2.1 
3.0 8.1 7.6 -0 .2  1.2 
4.0 7.1 8.5 1.0 0.2 
5.0 11.3 9.4 0.6 -0 .7  
6.0 10.5 10.2 -3.1 -1 .7  
7.0 11.8 11.1 -2 .8  -2 .6  
8.0 13.7 11.9 -1 .8  -3 .6  
9.0 10.6 12.8 -6 .0  -4 .5  

10.0 13.3 13.7 -5 .0  -5 .4  

SST(v) = 80.64; SSE(y) = 19.53 
SST(z) = 86.39; SSE(z) = 12.93 

,, , , ,  , , ,  , ,  , , , 

SSR(y) = 61.11; 
SSR(z) = 73.46; 
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Thus ,y  is the sum of a random part r and a fixed part x; the fixed part determines the 
mean values of the y population samples, with one distribution ofy for each x that we 
pick. The mean values o fy  lie on the straight line, # = bo + blx, which is the popu- 
lation regression line. The regression parameter bo is they mean for x = 0 and bl is the 
slope of the regression line. The random part, E, is independent ofx andy. To compute 
the regression parameters, we need values of N, ~, y, ~ x 2, ~-~y2, and ~ xy. Earlier, we 
discussed the computational shortcuts to compute ~ x  2 a n d ~ y  2 without first 
computing the means of x and y. The same can be accomplished for xy using, 

(x - ~) (y - y) - Z xy - Z x ~ - ~ y / N  

As examples of linear regression, consider the data sets in Table 3.12.1 for dependent 
variables Yi and zi which are both functions of the same independent variable xi (for 
example, Yi could be the eastward and zi the northward component of velocity as 
functions of time xi). We will compute the regression coefficients bo, bl plus the sample 
variance s 2 and percent of explained variance (100 SSR/SST) for each data set. 

To estimate the regression parameters, we must first compute the means of the 
three series 

~ '=5.50;  .~=9.78;  ~ = - 1 . 1 9  

We then use the means to calculate the sums in (3.12.6) 

10 10 

(Xi - -  ~-)2 _ 82.50; ~ (Xi - -  X) (Yi - - .~ )  - -  71.00; 
i=1 i=1 

10 

Z (x'i - -  "~) (Zi --  ;~) - -  -77.85 
i=1 

10 

SST(y)  - ~ (Yi _.~)2= 80.64 
i=1 

I0 

SST(z )  - ~ (g i --~)2 86.36 
i=1 

For the regression ofy  on x (9 - bo + blx), we find 

b0 - 5.05; bl = 0.861; s 2 - 2.44 

100. S S R ( y ) / S S T ( y )  - (100)61.11/80.64 = 75.8% 

while for the regression of z on x (~ = b0 + blx), we have 

b0 = 4.00; bl = -0.94; s 2 = 1.62 

100. S S R ( z ) / S S T ( z ) =  (100)73.46/86.36-  85.0% 

The ratio SSR/SST (variance explained/total variance) is a meaure of the goodness 
of fit of the regression curves called the correlation of determination, r 2. If the regression 
line fits perfectly all the sample values, all residuals would be zero. In turn, SSE - 0 
and SSR/SST = r E = 1. As the fit becomes increasingly less representative of the data 
points, r E decreases towards a possible minimum of zero. 
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3.12.2 Standard error of the est imate 

The measure of the absolute magnitude of the goodness of fit is the standard error of 
the estimate, sc, defined as 

sc - - [SSE/ (N-2)]  1/2 

~--- 2 .  (Y --"9)2 
(3.12.8) 

The number of degrees of freedom, N - 2 ,  for s~ is based on the fact that two para- 
meters, bo and bl are needed for any linear regression estimate. If st is from a normal 
distribution and has a mean of zero, then, in analogy with our discussion of the 
standard deviation of values about their mean, approximately 68.3% of the 
observations will fall within +ls~ units of the regression line, 95.4% will fall within 
+2s~ units of the line and 99.7% will fall within +3s~ units of this line. For the 
examples of Table 3.12.1 

Variable y: s~ - [ S S E ( y ) / ( N -  2)] 1/2 - (19.53/8) 1/2 - 1.56 

Variable z: s~ = [SSE(z) / (N-  2)] 1/2 - (12.93/8) 1/2 - 1.27 

As a result, the +2s~ ranges are +2(1.56) and +2(1.27), respectively. 
We next turn to our estimate of the slope, bl. Recalling that bl -- ~~x/~-~x 2, we find 

2 2 
Sxy _ s~ (3 12.9) 

- Z - E 

2 where Sb~ is the sample variance for our estimate,/~1, for the slope of the regression 
line. For small samples (N < 30), we can write the 95% confidence interval as 

[~1 -- to.OSSbl <_ bl <~ bl + to.oSSbl (3.12.10) 

Turning to the regression line itself, we wish to say something about the standard 
deviation about y (i.e. the regression line). First we note that g has variance 
Cr2xy/N and/~1 has variance crZy/~x 2. Since the errors, E, are assumed independent, the 
variance of the sums is the sum of the variances 

O2y __Cr2y[1 / (N_2)+x2 /Zx2  ] (3.12.11) 

which leads to the standard error given above. These confidence limits would appear 
as hyperbolae in regression diagrams such as Figure 3.10. The hyperbolae are the 
confidence belts for the different significance levels. Note the increasing hazard of 
making predictions for values ofx far removed from the mean value ~. Since the lines 
indicate that y must be within the confidence belt, higher signifance levels have 
narrower belts. Thus, estimates ofy  get worse as we move away from x, y. Remember 
that these confidence belts are for the regression line itself and not for the individual 
points. Hence, if repeated samples ofyi are taken of the same size and the same fixed 
value of x, the 95% of the confidence intervals, constructed for the mean value ofy and x, 
will contain the true value of the mean of y and x. If only one prediction is made of x, 
then the probability that the calculated interval of this will contain the true value is 95 %. 
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N N 

Nbo + bl Z X i  - Z y i  
i=1 i=1 

N N N 

boExi+blZx~-ZxiYi 
i=1 i= l  i--1 

(3.12.17) 

which we can solve for b0 and bl. We can generalize the procedure further by realizing 
that for Xo = 1 we have 

( 1  . . . . . . . . .  1 ) ( 1  x i ) ( N  EXi) 
x ' .  x . . . . . . . . . . . . . . . . .  - . . . . . .  (3.12.18) 

Xl . . . . . .  XN 1 XN E Xi E X2 

where X' is the transpose of the matrix X and, the sums are from 1 to N, and 

X t . y m 

N 

Y']Yi 
i=1 
N 

~ xiYi 
i= l  

(3.12.19) 

Our least squares equations can then be expressed as 

(X'X)-B = X ' .  Y (3.12.20) 

where 

(3.12.21) 

Solving the above equations for B, we obtain 

B - ( X ' - X ) - l X  '. Y (3.12.22) 

3.12.4 A computational  example of matrix regression 

Since linear regression is widely used in oceanography, we will illustrate its use by a 
simple example. Suppose we want to fit a line to the data pairs consisting of the 
independent variable xi and the dependent variable Yi given in Table 3.12.2. 

From these we find 

N N N N 

ZXi--O, ZYi--5, ZxiYi=7, Z X f - - 1 0  
i - 1  i=1 i - 1  i=1 

Substituting into equation (3.12.14), we have 
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Table 3.12.2. Data values used in least squares linear fit of a two-coefficient regression model, Yi  = F ( x i )  

_ ,  

Data Solution values 
Xi Yi (Xi)(Yi) Xi 2 

- 2  0 0 4 
- 1  0 0 1 

0 1 0 0 
1 1 1 1 
2 3 6 4 

b l -  
xiYi-- ~ Xi Yi 

i=1 i=1 

[Ni~=lX2- li=~lXi)21 

[(5)(7) - (0)(5)] = 0.7 
[ (5)(10)-  102] 

bo =Y - blX - 5/5 - (0.7)(0) = 1 

This same problem can be put in matrix form 

0 1 - 2  

0 1 -1  

Y =  1 , X =  1 0 

1 1 1 

3 1 2 

( 5  0 ) ,  X , . y = ( 5 )  
X ' .  X -  0 10 7 ' 

B - - ( X ' .  x ) - i x  ' .  Y -  ( 1/50 

( X ' - X )  - 1 -  (1/50 

0 5 1 

1 / 1 0 )  ( 7 ) ( 0 . 7 )  

0) 
1)10 

so that by (3.12.21), bo = 1 and b~ = 0.7. 
An important property of the simple straight line least-square estimators we have 

just derived is that bo and b~ are unbiased estimates of their true parameter values. We 
have assumed that E[e] - 0 and that VIe] = a2; thus the error variance is independent 
of x and V[Y] = V[e] = a 2. Since a 2 is usually unknown we estimate it using the 
sample variance (3.2.4) given by 

s2 - 1 U 
-- N----7]- Z .  (Yi _y)2  (3.12.23) 

z=l 

However, if we use the output values, 39i, from the least squares, to estimate 
ci(Y) - y i - . 9 i ,  we must write (3.12.23) as 
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$2 _ 1 N )2__ 1 SSE (3.12.24) 
- N -  2 ~ ( Y i - - Y i  N------Z~ 

i=1 

where SSE, given by (3.12.23), represents the sum of the squares of the errors and the 
N -  2 corresponds to the fact that two parameters, bo and b~, are needed in the model. 

In matrix notation we can write the SSE as 

SSE - Y ' .  Y -  (B' .  X ' ) .Y (3.12.25) 

Using this with our previous numerical example we write (3.12.25) as 

0 
0 

( 0  0 1 1 3 )  1 - ( 1  0 7 )  / ~ 1 1 1 1 1 )  \ 
1 " - 2  -1  0 1 2 

3 

0 
0 
1 
1 
3 

= 1 1 - ( 1  5 )  _ 1 1 _ 9 . 9 _ 1  1 0.7) 7 

Since S 2 --" S S E / ( N -  2), we have s 2 = 1.1/(3) - 0.367 as our estimator of ~r 2. 

3.12.5 Polynomial  curve fitting with least squares 

The use of least-squares fitting is not limited to the straight line regression model 
discussed thus far. In general, we can write our linear model as any polynomial of the 
form 

Y - bo + blx + b2 X2 + ... +bN XN + C (3.12.26) 

The procedure is the same as with the straight line case except that now the X matrix 
has N +  1 columns. Thus, our least-squares fit will have N +  1 linear equations with 
N +  1 unknowns, bo, bl, .. . ,  bN. These equations are called the normal equations. 

3.12.6 Relat ionship  be tween  least-squares and m a x i m u m  l ikel ihood 

As discussed earlier, the maximum likelihood estimator is one that maximizes the 
likelihood of sampling a given parameter. In general, if we have a sample xi from a 
population with the PDF f(Xi, 0), where 0 is the parameter of interest, the maximum 
likelihood estimator L(O) is the product of the individual independent probabilities 

L(O) -- f (xl, O)f (x2, O). . . f (xN, O) (3.12.27) 

If the errors all come from a normal distribution, this becomes from equation (3.11.10) 
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L ( O )  - 

N 
exp - ~ (Xi  - -  0) 2/2cr 2 

i=1 

o.N (27r) N/2 
(3.12.28) 

When this is maximized, it leads to the least-squares estimate 

1 x 

1=1 

In other words, the least-squares estimate of the mean of 0 can be derived from a 
normal distribution using the maximum likelihood criterion. This value is found to be 
the average of the independent variable x. 

3 . 1 3  R E L A T I O N S H I P  B E T W E E N  R E G R E S S I O N  A N D  
C O R R E L A T I O N  

The subject of correlation will be considered in more detail when we examine time- 
series analysis methods. Our intension, here, is simply to introduce the concept in 
general statistical terms and relate it to the simple regression model just discussed. As 
with regression, correlation relates two variables but unlike regression it is measured 
without estimation of the population regression line. 

The correlation coefficient, r, is a way of determining how well two (or more) variables 
co-vary in time or space. For two random variables x ( x 1 ,  x 2 ,  . . . ,  XN) andy  ( Y l , Y 2 ,  . . . ,  

YN) the correlation coefficient can be written 

t" --- 
1 ~-,  (Xi - -  "X)(Yi - -  Y) 

N -  1 Z..,i=l SxSy (3.13.1a) 

- C x y / S x S y  

where 

1 N 
Cxy = N - 1 Z. (X i  - -  x)(Yi --Y) (3.13.1b) 

t= l  

is the covariance of x and y, and Sx and Sy are the standard deviations for the two data 
records as defined by equation (3.2.4). We note two important properties of r: 

(1) r is a dimensionless quantity since the units of the numerator and the denomi- 
nator are the same; 

(2) the value of r lies between - 1 and + 1 since it is normalized by the product of the 
standard deviations of both variables. 

For r = +1, the data points ( x i , Y i )  cluster along a straight line and the samples are said 
to have a perfect correlation (+ for "in-phase" fluctuations and minus ( - )  for 180 ~ 
"out-of-phase" fluctuations). For r ~ 0, the points are scattered randomly on the graph 
and there is little or no relationship between the variables. The variables xi, Yi in 
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equation (3.13.1a, b) could be samples from two different, independent  random vari- 
ables or they could represent the independent  (input) and dependent  (output) 
variables of an est imation model. Alternatively, they could be samples from the same 
variable. Known as an auto-correlation, the later is usually computed for increasing lag 
or shifts in the starting value for one of the time series. A lag of "m" means that the 
first m values of one of the series, say the x series, are removed so that Xm+~ becomes 
the new x a and so on. 

Some authors prefer to use r 2 (the coefficient of determinat ion discussed in Section 
3.12.1 in the context of straight-line regression) rather than r (the correlation coeffi- 
cient) since the squared value can be used to construct a significance level for r 2 in 
terms of a hypothesis test that the true correlation squared is zero. Writ ing 

C 2 x y / ( $ x S y )  2 - S S R / S S T  - r 2 (3.13.2) 

we see that r 2 = variance explained/total  variance, as stated earlier. A value r = 0.75 
means that a linear regression o f y  on x explains r 2 = 56.25% of the total sample 
variance. Our approach is to use r to get the sign of the correlation and r 2 to estimate 
the joint variances. 

3.13.1 T h e  effects of  random errors on correlation 

Before discussing the relationship between r and our simple regression model, it is 
impor tant  to realize that sampling errors in xi andyi can only cause r to decrease. This 
can be shown by writing our two variables as a combination of true values (ai, 13i) and 
random e r r o r s  (~i, ei) .  In part icular  

x i  - ozi + r (3.13.3) 
Yi = 13i + ff i 

a s  

Using equations (3.13.2) and (3.13.3), we can write the correlation between X i andyi  

s~s~r~3 + s3s6r/~6 + s~s~r~ + s6ser6e 
rxy  - -  SxSy (3.13.4) 

where for convenience we have dropped the index i. Since the random errors 6 and 
are assumed to be independent  of each other and of the variables c~ and,/3 we know 
that 

r/36 = r ~  = r6e = 0 

so that (3.13.4) becomes 

S~Sf3 
rxy  = ~ r ~  (3.13.5) 

SxSy 

This result  means that the ratio between the product of the true standard deviations 
(s~, s/3) to the product of the measured variable (sx, Sy) determines  the magnitude of the 
computed  correlation coefficient (rxy) relative to the true value (r,~t~). 
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To determine (3.13.5), we expand the variances of x and y as 

1 ~-~ [ ( x i -  ~.)2 (yi _.y)2 ] ( 
k s " ' : / - N - 1  /=1 

245 

where, as usual, x, y are the average values for samples xi, Yi respectively. Expanding 
the numerator into its component terms through (3.13.3), and using the fact that the 
errors are independent of one another, and of x and y, yields 

N N 
Z (Xi --X)2~- Z [(Oq ---~)2q-r 2] 
i=1 i=1 
N N 2 2 Z (Yi--.,v)Z--Z [(fli--~) q-Ei] 
i=1 i=l 

Dividing through by ( N -  1) and using the definitions for standard devation, we find 

N N 

2 82 i=1 . 2 i=1 (3.13.6) s x = ~ +N---Z-- f ,  Sy -s2~ +N----Z- ~ 

Since the second terms in each of the above expressions can never be negative (N > 1), 
the observed variances Sx 2 and Sy 2 are always greater than the corresponding true 
variances. Applying this result to equation (3.13.5), we see that the calculated correl- 
ation, rxy, derived from the observations is always smaller than the true correlation, 
r,~. Because of random errors, the correlation coefficient computed from the obser- 
vations will be smaller than (or, at best, equal to) the true correlation coefficient. 

3.13.2 The maximum likelihood correlation estimator 

Returning to the relationship between correlation and regression, we note the maxi- 
mum likelihood estimator of the correlation coefficient is, by (3.13.1a) 

r - Z ( x i -  x ) (y i -Y)  / ( x i -  ~)2~--~ (Yi _~)2 (3.13.7) 
i-1 i=1 i=1 

for a bivariate normal population (xi, Yi). We can expand this using (3.13.1b) to get 

~ xiYi -- ~ Xi Yi 
i=1 i=1 r ~  

{ [ N N ( )2] [ N N /i__~l )21)1/2 Z X 2 -- ~-~Xi ~,y2_ Yi 
i=1 i=1 i=1 

(3.13.8) 

Note that the numerator in equation (3.13.8) is similar to the numerator of the esti- 
mator for bl in equation (3.12.7a). For the case where the regression line passes 
through the origin in (3.12.7b), we have bl - 0 and our model is 

Yi ~ blxi 

and we can rewrite (3.12.7a) as 
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/91 - -  

1/2 

[i=~lX2i~=lY2]l/2[i=~lX~ ] 
---- rSy/Sx; or, r = blSx/$y 

1/2 ( 3 . 1 3 . 9 )  

Thus, r can be computed from/~1 and vice versa if the standard deviations of the 
sample values x andy are known. Also, using the relationship between/~1 and r we can 
write the variance of the parameter estimate in equation (3.13.9) as 

s2 = 1 N 1 SSE (3 13 10) 
N -  2 Z (Yi _ y ) 2 =  N----C-2 . . 

i=1 

We can use this result to better understand the relationship between correlation and 
regression by writing the ratio of the regression variance in equation (3.13.10) to the 
sample variance in y alone; for large N, this becomes 

S 2_  __ ( N - 1 ) ( 1 - r 2 ) m  (1 - r 2) (3.13.11) 
s 2 N - 2  

Thus, for N large, r 2 is that portion of the variance ofy  that can be attributed to its 
regression on x while (1 - r  2) is that portion ofy's  variance that is independent of x. 

Earlier it was noted that a computationally efficient way to calculate the variance 
was to use equation (3.2.4b) which required only a single pass through the data 
sample. A similar saving can be gained in computing the covariance by expanding the 
product 

N N (i'._-~l Xi) (~=1 yi) 
Z (Xi- ~)(Yi--Y) -=- Z (xiYi)- N (3.13.12) 
I=1 i=1 

3.13.3 Correlation and regression: cause and effect 

A point worth stressing is that a high correlation coefficient or a "good" fit of a 
regression curvey = y(x) to a set of observations x, does not imply that x is "causing" 
y. Nor does it imply that x will provide a good predictor for y in the future. For 
example, the number of sockeye salmon returning to the Fraser River of British 
Columbia each fall from the North Pacific Ocean is often highly correlated with the 
mean fall surface water temperature at Amphitrite Point on the southwest coast of 
Vancouver Island. No one believes that the fish are responding directly to the 
temperature,  but rather that temperature is a proxy variable for the real factor (or 
combination of factors) influencing the homeward migration of the fish. Of course, we 
are not saying that one should not draw inferences or conclusions from correlation or 
regression analysis, but only that caution is advised when seeking cause-and-effect 
relationships between variables. We further remark that there is little point in 
drawing any type of line through the data unless the scatter about the line is 
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appreciably less than the overall spread of the observations. There is a tendency to fit 
trend lines to data with large variability and scatter even if a trend is not justified on 
statistical grounds. If I r] < 0.5, it hardly seems reasonable to fit a line for predictive 
purposes. 

There is another important aspect of regression-correlation analysis that is worth 
stressing: Although the value of the correlation coefficient or coefficient of 
determination does not depend on which variable (x or y) is designated as the 
independent variable and which is designated as the dependent variable, this 
distinction is very important when it comes to regression analysis. The regression 
coefficients a, b for the conditional distribution ofy given x (y = al + blx) are different 
than those for the conditional distribution ofx giveny (x = a2 + b2y). In general, al 
-a2/b2 and bl r 1/b2 so that the regression lines are different. In the first case, we are 
solving for the line shown in Figure 3.11 (a), while in the second case we are solving for 
the line in Figure 3.11 (b). 

As an example, consider the broken lines in Figure 3.11(c) which show the two 
different linear regression lines for the regression of the observed cross-channel sea- 
level differencesy = At/c, as measured by coastal tide gauges, and the calculated cross- 
channel sea-level difference x = A~/m obtained using concurrent current meter data 
from cross-channel moorings. The term A~c is simply the difference in the mean sea- 
level from one side of the 25-km-wide channel to the other, while Aqm is calculated 
from the current meter records assuming that the time-averaged along-channel flow is 
in geostrophic balance (Labrecque et al., 1994). The dotted line is the regression 
Ark = a l  +b]/k~Tm while the dashed line is the regression Aqm = a 2  +b2Arlc,  with 
bl ~ b2. The correlation coefficient r - 0.69 is the same for the two regressions. The 
solid line in Figure 3.11(c) is the so-called neutral regression line for the two para- 
meters (Garrett and Petrie, 1981) and might seem the line of choice since it is not 
obvious which parameter should be the independent parameter and which should be 
the dependent parameter. Neutral regression is equivalent to minimizing the sum of 
the square distances from the regression line (Figure 3.11d). 

In fisheries research, neutral regression is known as geometeric mean functional 
regression (GMFR) and is commonly used to relate fish body proportions when there is 
no clear basis to select dependent and independent variables (Sprent and Dolby, 
1980). For two variables with zero means, the slope estimator, b, is given by the square 
roots of the variance ratios 
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Figure 3.11. Straight line regressions (a) y on x, and (b) x on y showing the "direction" along which the 
variance is minimized. 
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Figure 3.11. (c) Scatter plot of Zlrl,: versus At/,,,. for a cross-section of the 22-km-wide Juan de Fuca 
Strait separating Vancouver Island from Washington State. Plots give the regression of the observed 
cross-channel sea level differences y = Arl,., as measured by coastal tide gauges, and the calculated cross- 
channel sea level difference, x = A~? ..... obtained using concurrent current meter data from cross-channel 
moorings. The solid line gives the bisector regression fit to the data (slope and 95% confidence level - 
0.96 4- 0.37); the dotted line (slope = 0.66 4- 0.14) and the dashed line (slope - 1.40 + 0.32) are the 
standard slopes for Ark versus A~Tm and AT]m versus AT/c , respectively, r - 0.69. (From Labrecque et 
al., 1994.) (d) The "direction" along which the variance for the data points in (a) and (b) is minimized. 

N 
~ (yi _ y ) 2  
/_-1 

byx - sgn ($xy ) N 1/2 '  

( x i  - 

bxy = sgn (Sxy) 

N 

i=1 
1/2; 

r e g r e s s i o n  .Yi - -  byxxi  

^ 

regression X i  - -  bxyYi 

(3.13.13) 

where sgn (Sxy) is the sign of the covariance function Sxy = ~ (Xi- x)(yi--Y) and byx = 

1/bxy, as required. Note that the slope byx lies midway between the slopes bl and b2 

bl -- 

b2 = 

N 
(Xi -- X)  (Yi -- Y )  

i=1 
N 

i=1 
N 

(Xi -- X) (Yi --.Y) 
i=1 

N 

i=1 

; regression line.gi - al + b lx i  

(3.13.14) 

; regression line YC i - -  a2 q-b2Y i  

given by (3.12.7a) for standard regression analyses (Figure 3.11a). The GMFR is then 
the geometric mean slope of the least-squares regression coefficient for the regression 
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slope ofy on x and the regression ofx ony; byx = [bl"(b2) - 111/2. Since the slope from the 
GMFR is simply a ratio of variances, it is "transparent" to the determination of 
correlation coefficients or coefficients of determination. It is these correlations, not 
the slope of the line, that test the strength of the linear relationship between the two 
variables. Moreover, none of the standard linear regression models reduces to the 
GMFR slope estimate except under unlikely circumstances. According to Sprent and 
Dolby (1980), ad hoc use of the GMFR is not recommended when there are errors in 
both variables. The GMFR model, though appealing, rests on shaky statistical ground 
and its use remains controversial. 

3.14 H Y P O T H E S I S  T E S T I N G  

Statistical inference takes one of two forms. Either we make estimates of population 
variables, as we have done thus far, or we test hypotheses about the implications of 
these variables. Statistical inference in which we choose between two conflicting 
hypotheses about the value of a particular population variable is known as hypothesis 
testing. 

Hypothesis testing follows scientific methodology from whose nomenclature the 
terms are borrowed. The investigator forms a "hypothesis," collects some sample data 
and uses a statistical construct to either reject or accept the original hypothesis. The 
basic elements of a statistical test are: (1) the null hypothesis, Ho (the hypothesis to be 
tested); (2) the alternate hypothesis, Ha; (3) the test statistic to be used; and (4) the 
region of rejection of the hypothesis. The active components of a statistical test are the 
test statistic and the associated rejection region, with the latter specifying the values of 
the test statistic for which the null hypothesis is rejected. We emphasize the point that 
"pure" hypothesis testing originated from early work in which the null hypothesis 
correspon~ded to an idea or theory about a population variable that the scientist hoped 
would be rejected. "Null" in this case means incorrect and invalid so that we could call 
it the "invalid hypothesis". In other words, the null hypotheis specified those values of 
the population variable which it was thought did not represent the true value of the 
variable. This is a form of negative thinking and is the reason that many of us would 
rather think in terms of the alternate hypothesis in which we specify those values of the 
variable that we hope will hold true (the "valid" hypothesis). Regardless of which 
hypothesis is chosen, it is important to remember that the true population value under 
consideration must either lie in the test set covered by Ho or in the set covered by Ha. 
There are no other choices. 

We restrict consideration of hypothesis testing to large samples (N > 30). In 
hypothesis testing, two types of errors are possible. In a type-1 error, the null 
hypothesis Ho is rejected when it is true. The probability of this type of error is 
denoted by c~. Type-2 errors occur when Ho is accepted when it is false (Ha is true). 
The probability of type-2 errors is written as/3. In Table 13.14.1, the probability P 
(accept Ho]Ho is true) - 1 -c~ corresponds to the 100(1 - ~ ) %  confidence interval. 
Alternatively, the probability P(reject Ho]Ho is false) - 1 - / 3  is the power of the 
statistical test since it indicates the ability of the test to determine when the null 
hypothesis is false and Ho should be rejected. 
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Table 13.14.1. The four possible decision outcomes in hypothesis testing and the probability of each 
decision outcome in a test hypothesis 

Action 

Accept Ho 

Possible situation 
Ho is true Ho is false 
Correct decision; Incorrect decision; 
confidence level 1 - a  (Type-2 error); 13 

Reject Ho Incorrect decision Correct decision; power 
(Type-1 error); a of the test 1 - 13 

Sum 1.00 1.00 

For a parameter  0 based on a random sample Xl, . . .  , XN, we want to test various 
values of 0 using the estimate 0 as a test statistic. This estimator is assumed to have an 
approximately normal sampling distribution. For a specified value of 0 ( - 0 o ) ,  we 
want to test the hypothesis, Ho, that ~J = 0o (written Ho: 0 -  0o) with the alternate 
hypothesis, Ha, that 0 > 0o (written Ha" 0 > 0o). An efficient test statistic for our 
assumed normal distribution is the standard normal Z defined as 

Z =  ( ~ - 0 )  (3.14.1) 

where 90 is the standard deviation of the approximately normal sampling distribution 
of 0, which can then be computed from the sample. For this test statistic, the null 
hypothesis (Ho: 0 = 0o) is rejected for Z > Z~ where a is the probability of a type-1 
error. Graphically, this rejection region is depicted as the shaded portion in Figure 
3.12(a), which is called an "upper-tail" test. Similarly, a "lower-tail" test would have 
the shaded rejection region starting at - Z ~  and corresponds to Z < - Z ~  and 0 < 0o 
(Figure 3.12b). A two-tailed test (Figure 3.12c) is one for which the null hypothesis 
rejection region is IZ[ > Za/2 and 0 r 0o. The decision of which test alternative to use 
should be based on the form of the alternate hypothesis. If one is interested in 
parameter values greater than 0o, an upper-tail test is used; for values less than 0o, a 
lower-tail test is appropriate. If one is interested in any change from 0o, it is best to use 
a two-tailed test. The following is an example for which a two-tailed test is 
appropriate. 

Suppose that daily averaged currents for some mooring locations are available for 
the same month from two different years (e.g. January 1984 and January 1985). We 
wish to test the hypothesis that the monthly means of the longshore component of the 
flow, V, for these two different years are the same. If the daily averages are computed 
from hourly observations, we invoke the central limit theorem and conclude that our 
sampling distributions are normally distributed. Taking each month as having 31 
days, we satisfy the condition of a large sample (N > 30) and can use the procedure 
outlined above. Suppose we observe that for January 1984 the mean and standard 
deviation of the observed current is V 8 4  = 23 • 3 cm/s while for January 1985 we find 
a monthly mean speed 1/'85 = 20 + 2 cm/s (here, the standard deviations are obtained 
from the signal variances). We now wish to test the null hypothesis that the true (as 
opposed to our sampled) monthly mean current speeds were statistically the same for 
the two separate years. We use the two-tailed test to detect any deviations from 



Statistical Methods  and Error Handl ing  251 

^ 

.:( e ) 

o o t 
I = 

Reject H 0 

(b) 

I 

Reject H 0 -Z a 

(c) 

a/2 / I \ a/2 

0 o 

RejectH 0 - Z ~ 2  Z / 2  Reject H 0 

Figure 3.12. Large-sample rejection regions (shaded areas) for the null hypothesis Ho : 0 = 0o, for the 
normally distributed function f(O). (a) Upper-tail test for H, : 6 - 0o, Ha : 0 > 0o; (b) lower-tail test 
with the rejection region for H,:O = 0,, Ha:O < 0o; and (c) two-tailed test for which the null 

hypothesis rejection region is Izl > z,,/~ and H,:O ~ 0,. 

equality. In this example, the point estimator used to detect any difference between the 
monthly mean records calculated from daily observed values is the sample mean 
difference, 0 -  (90 = V 8 4 -  V85. Our test statistic (3.14.1) is 
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Z .__ 
(v84- Vss) 

[s~4/N84 Jr- s~5/N85] 1/2 

which yields 

Z = (23 - 20) = 4.63 
[9/31 + 4//31] 1/2 

To determine if the above result falls in the rejection region, Z > Z~, we need to 
select the significance level c~ for type-1 errors. For the 95% significance level, c~ = 
0.05 and c~/2 - 0.025. From the standard normal table (Appendix D, Table D.1) Zo.025 
- 1.2. Our  test value Z = 4.63 is greater than 1.2 so that it falls within the rejection 
region, and we must  reject the hypothesis that the monthly mean current speeds are 
the same for both years. In most oceanographic applications hypothesis testing is 
l imited to the null hypothesis and thus type-1 errors are most appropriate. We will not 
consider here the implementat ion of type-2 errors which lead to the acceptance of an 
alternate hypothesis as described in Table 3.14.1. 

Turn ing  again to satellite al t imetry for an example, we note that the alt imeter 
height bias discussed earlier is one of the error sources that contributes to the overall 
error "budget"  of altimetric height measurements.  Suppose that we wish to know if 
the overall height error HT is less than some specified amount ,  H~. We first set up the 
null hypothesis (Ho: HT < H~) that the true mean is less than H~. At this point, we 
must  also select a significance level for our test. A significance level of 1 - c~ means 
that we do not want to make a mistake and reject the null hypothesis more than 
c~(100)% of the time. We begin by defining our hypothesis limit, HT, as 

Z ofl b 
H T - -  H ~ + - -  (3.14.2) 

v'N 

where the s tandard normal distribution Z~ is given by eqtiation (3.14.1) and Sb is the 
standard error (uncertainty) in our measurements.  If the mean of our measurements  is 
greater than HT, then we reject Ho and conclude that the mean is greater than H~ with 
a probabili ty c~ of being wrong. 

Suppose we set H~ = 13 cm and consider N = 9 consecutive statistically indepen- 
dent satellite measurements  in which each measurement  is assumed to have an 
uncertainty of so = 3 cm. If the mean height error is 15 cm, do we accept or reject the 
null hypothesis for the probability level c~ = 0.10? What  about the cases for c~ = 0.05 
and c~ = 0.01? Given our hypothesis limit H~ = 13 cm and the fact that N - 9 and Sb = 
3 cm, we can write equation (3.14.2) as H r  = 13 + Z ,  cm. According to the results of 

Table 3.14.2. Testing the null hypothesis that the overall bias error HT of satellite altimetry data is less 
than 13 cm. Assumes normal error distributions 

Significance Standard normal Total error 
level, a distribution, Z,~ height, Hr Decision 

0.10 2.326 15.326 cm reject Ho 
0.05 1.645 14.645 cm accept Ho 
0.01 1.280 14.280 cm accept Ho 
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Table 3.14.2, this means that we accept the null hypothesis that the overall error is less 
than 13 cm at the 5 and 10% probability levels but not at the 1% probability level 
(these are referred to as the 95%, 90%, and 99% significance levels, respectively). 

3.14.1 Significance levels and confidence intervals for correlation 

One useful application of null hypothesis testing is the development of significance 
levels for the correlation coefficient, r. If we take the null hypothesis as r = ro, where ro 
is some estimate of the correlation coefficient, we can determine the rejection region 
in terms of r at a chosen significance level c~ for different degrees of freedom ( N -  2). A 
list of such values is given in Appendix E. In that table, the correlation coefficient r for 
the 95 and 99% significance levels (also called the 5 and 1% levels depending on 
whether or not one is judging a population parameter or testing a hypothesis) are 
presented as functions of the number of degrees of freedom. 

For example, a sample of 20 pairs of (x,y) values with a correlation coefficient less 
than 0.444 and N - 2  = 18 degrees of freedom would not be significantly different 
from zero at the 95% confidence level. It is interesting to note that, because of the 
close relationship between r and the regression coefficient b~ of these pairs of values, 
we could have developed the table for r values using a test of the null hypothesis for bl. 

The procedure for finding confidence intervals for the correlation coefficient r is to 
first transform it into the standard normal variable Zr as 

l[ln (1 + r) - In (1 - r)] (3.14.3) Z r - ~  

which has the standard error 

1 
r = ( N -  3.1/2) (3.14.4) 

independent of the value of the correlation. The appropriate confidence interval is 
then 

Zr - Zc~/20z < Z < Zr q- Zc~/20"z (3.14.5) 

which can be transformed back into values of r using equation (3.14.3). 
Before leaving the subject of correlations we want to stress that correlations are 

merely statistical constructs and, while we have some mathematical guidelines as to 
the statistical reliability of these values, we cannot replace common sense and physical 
insight with our statistical calculations. It is entirely possible that our statistics will 
deceive us if we do not apply them carefully. We again emphasize that a high correl- 
ation can reveal either a close relationship between two variables or their simult- 
aneous dependence on a third variable. It is also possible that a high correlation may 
be due to complete coincidence and have no causal relationship behind it. A classic 
example (Snedecor and Cochran, 1967) is the high negative correlation ( -0 .98 )  
between the annual birthrate in Great Britain and the annual production of pig iron in 
the United States for the years 1875-1920. This high correlation is statistically 
significant for the available N - 2  - 43 degrees of freedom, but the likelihood of a 
direct relationship between these two variables, is very low. 



254 Data  Analysis Methods in Physical Oceanography 

3.14.2 Analysis of variance and the F-distribution 

Most of the statistical tests we have presented to this point are designed to test for 
differences between two populations. In certain circumstances, we may wish to 
investigate the differences among three or more populations simultaneously rather 
than attempt the arduous task of examining all possible pairs. For example, we might 
want to compare the mean lifetimes of drifters sold by several different manufacturers 
to see if there is a difference in survivability for similar environmental conditions; or, 
we might want to look for significant differences among temperature or salinity data 
measured simultaneously during an intercomparison of several different com- 
mercially available CTDs. The analysis of variance (ANOVA) is a method for per- 
forming simultaneous tests on data sets drawn from different populations. In essence, 
ANOVA is a test between the amount of variation in the data that can be attributed to 
chance and that which can be attributed to specific causes and effects. If the amount of 
variability between samples is small relative to the variability within samples, then the 
null hypothesis Ho-- that  the variability occurred by chance--cannot  be rejected. If, 
on the other hand, the ratio of these variations is sufficiently large, we can reject Ho. 
"Sufficiently large", in this case, is determined by the ratio of two continuous ~2 
probability distributions. This ratio is known as the F-distribution. 

To examine this subject further, we need several definitions. Suppose we have 
samples from a total of J populations and that a given sample consists of Nj- values. In 
ANOVA, the J samples are called J "treatments",  a term that stems from early 
applications of the method to agricultural problems where soils were "treated" with 
different kinds of fertilizer and the statistical results compared. In the one-factor 
ANOVA model, the values YO for a particular treatment (input), xj, differ from some 
common background value, #, because of random effects; that is 

Yij - # + Xj + Cij; j - 1, 2, ..., J (3.14.6) 
i = l , 2 , . . . , N y  . . . .  

where the outcome YO is made up of a common (grand average) effect (#), plus a 
treatment effect (xj) and a random effect, cij. The grand mean, #, and the treatment 
effects, xj, are assumed to be constants while the errors, eij, are independent, normally 
distributed, variables with zero mean and a common variance, a 2, for all populations. 
The null hypothesis for this one-factor model is that the treatments have zero effect. 
That is, Ho: xj = 0 (j= 1, 2, ... , J)  or, equivalently, Ho: #1 = #2 = ... = ~y (i.e. there is no 
difference between the populations aside from that due to random errors). The 
alternative hypothesis is that some of the treatments have a nonzero effect. Note that 
" t reatment"  can refer to any basic parameter we wish to compare such as buoy design, 
power supply, or CTD manufacturer. To test the null hypotheses, we consider samples 
of size Nj from each of the J populations. For each of these samples, we calculate the 
mean value.~j (1 = 1, 2, . . . ,  J) .  The grand mean for all the data is denoted as.~. 

As an example, suppose we want to intercompare the temperature records from 
three types of CTDs placed in the same temperature bath under identical sampling 
conditions. Four countries take part in the intercomparison and each brings the same 
three types of CTD. The results of the test are reproduced in Table 3.14.3. 

If Ho is true, #1 = #2 = #3, and the measured differences between,~,,v2, and.~3 in 
Table 3.14.3 can be attributed to random processes. 
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Table 3.14.3. Temperatures in ~ measured by three makes of CTD in the same calibration tank. Four 
instruments of each type are used in the test. The grand mean for the data from all three instruments is -~ 
= 15.002~ 

Measurement (i) 
CTD Type 1 CTD Type 2 CTD Type 3 
Sample j - 1 Sample j = 2 Sample j = 3 

1 15.001 15.004 15.002 
2 14.999 15.002 15.003 
3 15.000 15.001 15.000 
4 14.998 15.004 15.002 

Mean _~ ~ 15.000 = _vl 15.003 = .v2 15.002 - ..Y3 

The treatment effects for the CTD example are given by 

Xl -_Yl -.Y - -0.002~ 

x2 =_v2 - _ V -  + 0-001~ 

x3 =-Y3 - Y  - O.O~ 

where .~ - Cvl + Y2 + .y3)/3. The ANOVA test involves determining whether the 
estimated values of x i are large enough to convince us that Ho is not true. Whenever 
Ho is true, we can expect that the variability between the J means is the same as the 
variability within each sample (the only source of variability is the random effects, eo). 
However, if the treatment effects are not all zero, then the variability between samples 
should be larger than the variability within the samples. 

The variation within the J samples is found by first summing the squared devia- 
tions of y0 about the mean value yj for each sample, namely 

Nj 
(yij _yj)2 

i=1 

If we then sum this variation over all J samples, we obtain the sum of squares within 
(ssw) 

y 
Sum of squares within: S S W -  Z Z (yij _.~j)2 

j = l  i=1 

(3.14.7) 

Note that the sample lengths, Nj, need not be the same since the summation for each 
sample uses only the mean for that particular sample. Next, we will need the amount 
of variation between the samples (SSB). This is obtained by taking the squared 
deviation of the mean of the J t h  sample, yj, and the grand mean,.~. This deviation 
must then be weighted by the number of observations in the J th  sample. The overall 
sum is given by 

y 
Sum of squares between: S S B -  Z Nj(fj  _~)2 (3.14.8) 

j = l  

To compare the variability within samples to the variability between samples, we need 
to divide each sum by its respective number of degrees of freedom, just as we did with 
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other variance expressions such as s 2. For SSB, the degrees of freedom (DOF) = J - 1 
while for SSW 

The mean square values are then: 

SSB 
Mean square between: MSB = j _  1 (3.14.9a) 

Mean square within: MSW = 
S S W  

(3.14.9b) 

In the above example, J - 1 = 2 and ~Y=l Nj - J  = 9. The calculated values of MSB 
and MSW for our CTD example are given in Table 3.14.4. Specifically 

4 4 4 
s a w  -- Z (..vii -..v1) 2 q- Z (Yi2 - .~2)  2 Jr- Z (Yi3 -..v3) 2 

i=1 i=1 i=1 

SSB - N1Cv1 - ~)2ff-N2(372 - .y)Z+N3(Y3 - . y )2+N4(Y4  _.~)2 

where N] = 4 ( j  = 1, ..., 4). To determine if the ratio of MSB to MSW is large enough 
to reject the null hypothesis, we use the F-distribution f o r J  - 1 and 

degrees of freedom. 
Named after R. A. Fisher who first studied it in 1924, the F-distribution is defined 

in terms of the ratio of two independent X2 variables divided by their respective 
degrees of freedom. If X1 is a X 2 variable with Ul degrees of freedom and X2 is another 
X 2 variable with u2 degrees of freedom, then the random variable 

gl/l"l (3.14.10) 
F(ul, /-'2) -- X2/1./2 

is a nonnegative chi-square variable with u~ degrees of freedom in the numerator and 
/-/2 degrees of freedom in the denominator. I f J  = 2, in the CTD example above, the F- 

Table 3.14.4. Calculated values of sum of squares and mean square values for the CTD temperature 
intercomparison. DOF = number of degrees of freedom 

Type of variation Sum of squares (~ z) DOF Mean square (~ 2) 

Between samples (type 20 x 10- 6 
of CTD) 
Within samples (all CTDs) 18 x 10 -6  
Total 38 x 10- 6 

, ,  , . . . . . . . . . . . . . . .  , ,  

2 10 • 10 -6  

9 2 • 10 -6 
11 (ratio = 5.0) 
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2 test is equivalent to a one-sided t-test. There is no upper limit to F, which like the 
distribution is skewed to the right. Tables are used to list the critical values of P (F > 
F~) for selected degrees of freedom //1 and /J2 for the two most commonly used 
significance levels, ~ - 0.05 and c~ - 0.01. In ANOVA, the values of SSB and SSW 
follow ~2-distributions. Therefore, if we let X1 - SSB and X2 - SSW, then 

( j  ) [ S S B / ( J - 1 ) ]  MSB (314.11) 
F - 1 ,  ~ ' N j - g  - - S S W ( ~ N j - y )  = MSW 

When MSB is large relative to MSW, F will be large and we can justifiably reject the 
null hypothesis that the different CTDs (different treatment effects) measure the same 
temperature within the accuracy of the instruments. For our CTD intercomparison 
(Table 3.14.4), we have MSB/MSW - 5.0, ~,1=2 and ~'2 = 9. Using the values for the F- 
distribution for 2 and 9 degrees of freedom from Appendix D, Table D.4a, we find 
F,~(2,9) - 4.26 for ~ - 0.05 (95% confidence level) and F~(2,9) = 8.02 for o~ - 0.01 
(99% confidence level). Since, F - 5.0 in our example, we conclude that a difference 
exists among the different makes of CTD at the 95% confidence level, but not at the 
99% confidence level. 

3 . 1 5  E F F E C T I V E  D E G R E E S  O F  F R E E D O M  

To this point, we have assumed that we are dealing with random variables and each of 
the N values in a given sample are statistically independent. For example, in 
calculating the unbiased standard deviation for N data points, we assume there are N 
- 1 degrees of freedom. (We use N - 1 rather than N since we need a minimum of 
two values to calculate the standard deviaton of a sample.) Similarly, in Sections 3.8 
and 3.10, we specify confidence limits in terms of the number of samples rather than 
the "true" number of degrees of freedom of the sample. In reality, consecutive data 
values may not be independent. Contributions from low-frequency components and 
narrow band oscillations such as in inertial motions may lead to a high degree of 
correlation between values separated by large times or distances. The most common 
example of highly coherent narrow band signals are the tides and tidal currents which 
possess a strong temporal and spatial coherence. If we want our statistics to have any 
real meaning, we are forced to find the effective number of degrees of freedom using 
information on the coherence and autocorrelation of our data. 

The effects of coherent nonrandom processes on data series lead us into the 
question of data redundancy in multivariate linear regression. Our general model is 

M 

Y(ti) = ~-'~bkxk(ti); i=  1, ..., N (3.15.1) 
k=l 

where the Xk represents M observed parameters or quantities at times ti. The bk are M 
linear-regression coefficients relating the independent variables Xk(ti) tO the N model 
estimates,.9(ti). Here, the Xk observations can be measurements of different physical 
quantities or of the same quantity measured at different times or locations. 

The estimate33 differs from the true parameter by an error Ci =33(ti) - y ( t i )  =Yi --Yi. 
Following our earlier discussion, we assume that this error is randomly distributed 
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and is therefore uncorrelated with the input data Xk(ti). To find the best estimate, w~ 
apply the method of least squares to minimize the mean square error 

M M M 

e-'-i -- Z Z bibjx-~ -- 2 Z bj2-~ + y-7 (3.15.21 
i=1 j= l  j= l  

In this case, the overbars represent ensemble averages. To assist us in our mini. 
mization, we invoke the Gauss-Markov theorem which says that the estimator, giver 
by equation (3.15.1), with the smallest mean square error is that with coefficients 

M 

(3.15.31 
j -1  

where { ~ } - 1  is the i , j  element of the inverse of the M x M cross covariance matrb 
of the input variables (note: {x-~Tj}-lr 1 / ~ ) .  This mean-square product matrix i~ 
always positive definite unless one of the input variables xk can be expressed as ar 
exact combination of the other input values. The presence of random measuremen 
errors in all input data make this "degeneracy" highly unlikely. It should be noted 
however, that it is the partial correlation between inputs that increases the uncertaint3 
in our estimator by lowering the degrees of freedom through a reduction in th~ 
independence of our input parameters. 

2 We can write the minimum least-square error e o as 

M M 

e~-y--2 Z Z~-7 {X-~j } -1 - yxj (3.15.41 
i=1 j= l  

At this point, we introduce a measure of the reliability of our estimate called the skil. 
(S) of the model. This skill is defined as the fraction of the true parameter varianc~ 
explained by our linear statistical estimator; thus 

i=1 j= l  

The skill value ranges from no skill (S = 0) to perfect skill (S = 1). We note that fo~ 
the case (M = 1), S is the square of the correlation between xl and y. 

The fundamental trade-off for any linear estimation model is that, while one want~ 
to use as many independent input variables as possible to avoid interdependenc~ 
among the estimates of the dependent variable, each new input contributes randorr 
measurement  errors that degrade the overall estimate. As pointed out by Davis (1977) 
the best criterion for selecting the input data parameters is to use a priori theoretica 
considerations. If this is not possible, some effort should be made to select thos~ 
inputs which contribute most to the estimation skill. 

The conflicting requirements of limiting M (the observed parameters) and includ. 
ing all candidate input parameters is a dilemma. In considering this dilemma 
Chelton (1983) concludes that the only way to reduce the error limits on the estimatec 
regression coefficients is to increase what are called the "effective degrees of freedom 
N*." This can be done only by increasing the sample size of the input variable (i.e 
using a longer time series) or by high-passing the data to eliminate contributions frorr 
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unresolved, and generally coherent, low-frequency components. Since we are forced to 
deal with relatively short data records in which ensemble averages are replaced by 
sample averages over time or space, we need a procedure to evaluate N*, the effective 
degrees of freedom. 

In the case of real data, ensemble averages are generally replaced with sample 
averages over time or space so that the resultant values become estimates. Thus, the 
skill can be written as S given by (3.15.5). If we assume for a moment that the xk input 
data are serially uncorrelated (i.e. we expand the data series into orthogonal func- 
tions), we can write the sample estimate of the skill as 

 :EEx2y,  i=1 j--1 

Following Davis (1978) we can expand this skill estimate into a true skill plus an 
artificial skill 

S - S + S A  (3.15.7) 

The artificial skill, SA, arises from errors in the estimates and can be calculated by 
evaluating the skill in equation (3.15.6) at a very long time (or space lag) where no real 
skill is expected. At this point, there is no true estimation skill and S = SA. 

Davis (1976) derived an appropriate expression for the expected (mean) value of 
this artificial skill which relates it to the effective degrees of freedom N* 

M 
SA - ~ (N~) -I (3.15.8) 

k=l 

where N~ is the effective degrees of freedom associated with the sample estimate of the 
covariance between the outputy  and and input xk of the model. Under the conditions 
that S (the true skill) is not large, that the record length N is long compared to the 

autocovariance scales ofy and x, and that the N~are the same for all N, we can write N* 
as 

N* - N (3.15.9a) 

['r=-< Cxx(T)Cyy(T)] / [Cxx(O)Cyy(O)] 
N 

= (3.15.9b) 

[ ~ Pxx(T)PyY(T) 
T----O0 

where p<<(r)- C<<(r)/Q<(O)- Q<(r)/s{ is the normalized autocovariance function 
for any variable < (with variance s~), and 

C<<(T) - E[(r - ~)(<(T + ti) -- ~)] 

1 N' (3.15.10) 
N--TZ{(<(ti) - ~)(~(T + ti) - ~)} 

i=1 

where N' is the number of data values used in the summation for the particular lag, r. 
A more complete form of this expression was given by Chelton (1983) as 
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N* = N (3.15.1 la' 

E Cxx(T)%(T) -t- Cxy(T)Cyx('T) /[Cxx(O)Cyy(O)] 
T - - - - O 0  

N 
= (3.15.11b I 

[ s Pxx(T)pyy(T) "-[- Pxy(T)pyx('T')] 

This expression now includes the cross-covariances betweeny and x [e.g. Cxy(r) ant 
pry(r)] and is not limited to cases where S is small. 

In general, the true auto- and cross-covariances are not known and the computatior 
of N* requires the substitution of sample estimates over finite lags for the correlation: 
in equation (3.15.11). The resulting effective degrees of freedom, N*, can be used witt 
standard tables to find the selected significance levels for ,~. In the ideal case, when al 
input variables are neither cross- nor serially correlated (and therefore independent) 
the effective number of degrees of freedom is N, the sample size. In general, however 
input data series are serially correlated and N* << N. The larger the time/spac~ 
correlation scales in equation (3.15.11), the smaller the value of N*. This means that i 
is the large scale, low-frequency components of the input data that lead to a decreas~ 
in the number of independent values in the data series. 

The limitations of estimating regression characteristics for real data can b~ 
summarized as follows: 

(1) Accurate statistical results require the use of the effective number of degrees o 
freedom, N*, with N* generally much less than the total number of observations 
N. 

(2) The accuracy of the estimated regression coefficients increases as N* increases. 
(3) The accuracy of the regression coefficient decreases as the number of inputs 

increases (measurement error is added). 
(4) The accuracy increases as the model skill increases and decreases as the inpu 

parameters become more correlated. 

The above considerations emphasize the need for careful selection of the input dau 
and the careful evaluation of the characteristics of these data. As pointed out by Davi: 
(1977), a fundamental part of this selection process is the determination of the spac~ 
and time scales to be studied. The methods used to extract this fundamental scah 
information from the input data can range from cross-spectral analysis (see Chapter 5 
to a filtering of the data using preselected windows. Performing this filtering in th~ 
time domain rather than the frequency domain is often less complicated. The filterin~ 
process has the goal of eliminating scales that are not expected to contribute to th~ 
true correlation but which will add artificial correlation due to instrument and sam 
pling errors. 

Once the space and/or time scales are determined, selected or set by filtering, the 
next step is the selection of the input series to use in the estimate. At this stage, th~ 
dilemma arises between limiting the effects of errors and at the same time including a: 
many as possible uncorrelated input variables to increase the degrees of freedom 
Davis (1977) recommends using dynamical considerations to make this selection anr 
shows how the data required for proper statistical estimation are generally thos~ 
required to make the dynamical system well posed. However, he also mentions that, ir 
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general, the dynamics of most processes are not well enough understood and that 
specification data are not known with certainty. Nevertheless, some quantitative 
understanding of the physical system can serve as a useful guide to the selection of 
estimation data. 

3.15.1 Trend estimates and the integral time scale 

Most oceanographic variability arises through a combination of random and non- 
random processes. The presence of tidal and low-frequency components means that 
data points in time or space series are not independent of one another. The data that 
we collect are not truly random samples drawn from random populations. There is 
invariably a nonzero correlation between values in the series which must be taken into 
account when we tally-up the true number of independent samples or degrees of 
freedom we think we have in our system. This number is important when it comes to 
determining the confidence limits of linear regression slopes and parameter estimates. 

As an example, consider the confidence limits on the slope of the least squares 
linear regression)  = bo + blx (where, again, ^ denotes an estimator for the function y). 
From equation (3.8.6), the limits are 

+(scG/z,u)/[(N - l )sx] 1/2 (3.15.12a) 

or, in terms of the estimator 31 for b~ 

b l -  (s~G/2,,) 
[(N - 1)Sx] 1/2 

< t31 < hi  + ( S e t a / 2 ' u )  (3.15.12b) 
[(N - 1)Sx] 1/2 

where u = N - 2 is the number of degrees of freedom for the Student's t-distribution 
at the (1 - c0100% confidence level, and the standard error of the estimate, s~, is given 
by 

(Yi -33i) 2 - 1 1/2 
s~ = - 2 i=~ - 2 SSE (3.15.13) 

The standard deviation for the x variable, Sx, is given by 

INI 
Sx = --  I i= 1 (Xi --  X )2  (3.15.14a) 

or 

v/N - 1 Sx = (x i  - ~)2 
i=1 

(3.15.14b) 

The question is: what do we use for the number of degrees of freedom if the N 
samples in our series are not statistically independent? The reason we ask this 
question is that the characteristic amplitudes of the fluctuations s~ and Sx are 
calculated using all N values in our data series when we really should be using some 
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sort of effective number of degrees of freedom N*(< N) which takes into account the 
degree of correlation that exists between data points (as discussed in the previous 
section). 

Suppose we decide to err on the conservative side by agreeing to work with that 
value of N* which makes the confidence limits -+-(sct,~/z.~)/[(N- 1)Sx] 1/2 as small as 
justifiably possible. This means that when we estimate the confidence limits for a 
regression slope for a given confidence coefficient, c~, we know that we have probably 
been too cautious and that the confidence limits on the slope probably bracket those 
that we derive. 

We begin by keeping s~ as it is. If there are high frequency (possibly random) 
fluctuations superimposed on coherent low-frequency motions, retaining the high- 
frequency variability adds to the magnitude of s~. Had we low-pass filtered the data 
first and recomputed s~ based on the true number of data points in our low-pass 
filtered record, we would expect s~ to be somewhat smaller. By using s~ as it is we are 
assuming that it is a fixed quantity no matter how we subsample or filter the data (s~ = 
constant). We do the same with sx but now replace N - 1 with N* - 1, where N* < N. 
This increases the magnitude of the confidence limits. All that remains is to assume 
that the number of degrees of freedom for the t-distribution are given by the effective 
number of degrees of freedom u = N* - 2. This statistic has a larger value than for 
v = N - 2  so that, again, we are overestimating the magnitude of the confidence 
interval. This confidence interval is then given by 

4-(s~t(~/2;~,)/[(N*- l)sx] 1/2 (3.15.15a) 

i . e .  

(s~t~/2, ,) (set,~/2, ~,) 
bl - </31 < bl + (3.15.15b) 

[(N* - 1)Sx] 1/2 [(N* - 1)Sx] 1/2 

with u = N* - 2. 
Our final task is define the effective number of degrees of freedom, N*, based on a 

knowledge of the autocovariance function C(r) (3.15.10) as a function of lag 7. To do 
this, we must first find the integral time scale T for the data record 

1 ~ A 7  
T - C(0-----) k=o - ~  [C(rk + AT) + C(Tk)](discrete case) (3.15.16a) 

~X5 

_- ~ 1  / C(T)dT continuous case (3.15.16b) 
c(o) 

0 

where m is the number of lag values to be incorporated in the integral, AT is the time 
increment between data values and �89 [C(rk + AT) + C(rk)] is the mean value of C for 
the midpoint of the lag interval (rk, rk + A-r). Once the integral time scale is known, 
the effective degrees of freedom are found by 

NAt  
N * =  (3 15 17) 

T " " 

where At is the sampling increment and NAt is the total length (duration or distance) 
of the record. If, for example, N = 120, At = 1 h, and T = 10 h, then N* - 12 (<< N). 
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To find the autocovariance function, we let ~-~ - kAT be the kth lag (k = 0, 1,... ), 
then 

1 N - k  

C ( T k ) - N _  l _ k E ( Y i - Y i z ) ( y i + k - Y i + k ) ; k - O ,  ..., X , , , a x  (3.15.18a) 
i=1 

1 N 
C(0) - N - 1 Z (Yi - S )  2 -  Sy 2 (3.15.18b) 

t=l  

where C(0) is the just the variance Sy 2 of the full data series. In both equations 
(3.15.18a) and (3.15.18b), the data start with the first value f o r /  - 1; Nmax is the 
m a x i m u m  number  of reasonable lag values (starting at zero lag and going to << N/2)  
that can be calculated before the summation becomes erratic. In theory, we would like 
C(T) ~ 0 as T ~ N. In reality, however, the data series will contain low-frequency 
components  which will cause the autocovariance function to oscillate about zero or 
asymptote towards a nonzero value. It should also be obvious that the statistical 
significance of the summat ion becomes meaningless at large lag due to the fact that 
the statistic is based on fewer and fewer values as the lag becomes large. For example, 
at a lag k = (N - 3) there are only four values that go into the summation and these 
are derived from neighboring points that are likely highly correlated. 

We can picture the integral time scale using equation (3.15.16b). Wri t ing 

f 
T .C(O)  - ] C(T)d'r 

o ,  

all ~- 

we see that the area under the curve C(T) has been equated to the rectangular region 
T .  C(0) (Figure 13.13). In essence, we take a reasonable portion of the curve C(T), 
obtain its area and divide the integral (sum) by its value at zero lag, C(0). An example 
of the autocovariance function and the integral time scale derived from it are shown in 
Figure 13.14 for satellite-tracked drifter data in the North Pacific. 

(a) 
C(~) 

1 c(o) 

(b) 

I" 

C(O) l 

t 
Integral 

time scale 
T 

,r 

Figure 3.13. Definition of the integral time scale. The area under the curve C(T) versus ~- in (a) is 
equated to the rectangular region TC(O) in (b). In practice, only a reasonable portion of the curve C(7-) is 

used to obtain the area in (a). 
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3.16 E D I T I N G  A N D  D E S P I K I N G  T E C H N I Q U E S :  T H E  
N A T U R E  OF E R R O R S  

A major concern in processing oceanographic data is how to distinguish the true 
oceanic signal from measurement "errors" or other erroneous values. There are two 
very different types of measurement errors that can affect data. Random errors, usually 
equated with "noise",  have random probability distributions and are generally small 
compared to the signal. Random errors are associated with inaccuracies in the 
measurement  system or with real variability that is not resolved by the measurement 
system. The well-accepted statistical techniques for estimating the effects of such 
random errors are based largely on the statistics of a random population (see previous 
sections on statistics). Other errors which strongly influence data analysis are 
accidental errors. These errors are not representative of the true population and occur 
as a result of undetected instrument failures, misreading of scales, incorrect recording 
of data, and other human failings. In the following discussion, we will handle these 
two error types in reverse order since the large accidental errors must be removed first 
before techniques can be applied to treat the "statistical" (random) errors. 

One example of a large accidental error would be assigning an incorrect geographic 
location to an oceanographic measurement which then transfers the observations to a 

( a )  
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Figure 3.14. Autocovariance functions and corresponding integral time scales for zonal (u) and 
meridional (v) velocities of satellite-tracked drifter deployed to the south of the Aleutian Islands in the 
northeast Pacific (see insert) and covering the period I3 November 1991 to 30 July 1993 based on six- 

hourly sampling interval. (Courtesy of Adrian Dolling.) 
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Figure 3.14..dutocovariance functions and corresponding integral time scales for zonal (u) and 
meridional (v) velocities of satellite-tracked drifter deployed to the south of the Aleutian Islands in the 
northeast Pacific (see insert) and covering the period 13 November 1991 to 30 July 1993 based on six- 

hourly sampling interval. (Courtesy of Adrian Dolling.) 

region with which they have no direct relationship. Some of these errors, such as 
oceanographic stations on land, are easily detected, while others are less obvious. 
Another example of such errors would be biases in a group of measurements due to the 
application of incorrect sensor calibrations or undetected instrument malfunctions. 
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Again, the new data would be inconsistent with other existing measurements of the 
same phenomenon. Our goal is to remove or correct such errors in order to make the 
data set as self consistent as possible. If we know the history of the data, meaning the 
details of its collection and reduction, we may be in a better position to understand the 
sources of these errors. If we have received the data from another source, or are 
looking at archived data, we may not have available the necessary details on the 
"petigree" of the data and may have to come to some rather arbitrary decisions 
regarding its reliability. Considering the widespread use of computer-linked data 
banks, this is not a trivial problem. The question is how to ensure the necessary 
quality control yet ensure rapid dissemination and accessibility to data files. 

3.16.1 Identifying and removing errors 

There are two important axioms to follow when dealing with large erroneous values or 
"spikes": 

(1) To identify the large errors, it is necessary to examine all of the data in visual form 
and to get a "feel" for the data; 

(2) When large errors are encountered, it is usually best to eliminate them all 
together rather than try to "correct" them and incorporate them back into the 
data set. 

Of course, care must be taken not to reject important data points just because they 
don't fit either the previous data structure or our preconceived notion of the process. A 
good example is the determination of heat transport in the South Atlantic. Bennett 
(1976) suggested that the oceanic heat transport in this ocean is directed toward the 
equator, contrary to the widely accepted notion that oceanic heat transports are 
generally poleward. Stommel (personal communication) noted that, in his tabulation 
of property fluxes for the South Atlantic, W~st (1957) conspicuously left out the flux 
of heat while treating other less easily computed transports such as those of nutrients 
and oxygen. Through an exchange of letters with a former student of W~st's, Stommel 
learned that the heat content calculation indeed showed that heat is transported 
equatorward. W~st considered this to be the wrong direction and the results were not 
published along with the other flux values. The point of this story is to illustrate the 
way in which our prejudice can lead us to reject significant results. In such cases, 
there is no hard rule as to how this decision is made and a great deal of subjectivity 
will always be inherent in this level of data interpretion. 

The need to examine all the data to detect errors presents a difficult task because of 
the large numbers of values and the difficulty of looking at unprocessed data. In this 
case, it is more important to think of ways in which we can present the data so as to 
ask and answer the questions regarding consistency of the measurements. A compact 
over-view of all the data is the best solution. This presentation may be as simple as a 
scatter diagram of the observations versus some independent variable, or a scatter 
diagram relating two concurrently measured parameters. While scatter diagrams 
cannot be used to to resolve visually individual points, they do reveal groupings of 
points which relate to the physical processes expressed by the data. As an example, 
consider a temperature-sal ini ty scatter diagram (Figure 3.15) computed using a large 
number  of hydrographic data collected from bottle casts. Here, the groups of dots 
labelled "a", "b" refer to different water masses present in the 5 ~ square 35-40~ 15- 
20~ where the data were collected. The data labelled "c" clearly represent a distinct 
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water mass since the points lie along a line divergent from the rest of the scatter 
values. If we look at other similar TS scatter plots, we recognize that this line is 
consistent with the TS relationship from a corresponding square at this same 
longitude but south of the equator. Thus, it is likely that the latitude recorded was 
incorrect and that these data are simply misplaced. We correct this by eliminating the 
points "c" from our square. However, we can't be sufficiently confident of our 
assumption to add the points to the other square even though the data coverage there 
is not very good. 

Often it is not possible to develop a simple summary presentation of all the data. In 
the case of current meter data, a time-series presentation is the most appropriate way of 
looking at the data. As noted by Pillbury et al. (1974), error detection using this 
technique is very time consuming. They note that this procedure can be used 
successfully for speed, pressure, salinity, and temperature but not for direction, which 
varies widely. This is due to the fact that direction is limited to the range 0-360 ~ and 
shows no extreme values. Because of the wrap-around (27r discontinuity) problem, in 
which 0 ~ - 360 ~ (or - 1 8 0  ~ = +180~ direction records tend to be very "spiky", 
especially in regions of strong tidal flow. A scatter diagram of speed versus direction can 
be used to detect systematic errors between the speed and direction sensors and to pin- 
point those times when the current speed is below the threshold recording level of the 
instrument. This would be displayed by the direction readings at speeds below 
threshold and would be easier to identify on the scatter plot than in the individual time 
series. The only way around the problem with the direction channel is to transform the 
recorded time series of speed and direction (U, ~9) to orthogonal components of velocity 
(u, v). In particular, separate plots of the east-west (u) and the north-south (v) velocity 
components (or alongshore and cross-shore components for data collected near the 
coast) quickly reveal any erroneous values in the data (Figure 3.16). 

Pillsbury et al. (1974) report that, for Aanderaa RCM4 and RCM5 current meters, 
there are several sources of large errors. We will discuss these as typical of the errors 
inherent in moored current meter data since many of these instruments remain in use. 
One source of error is the current meter's encoder which might encounter a small 
electrical resistance. The probability of this occurring is considered small. A more 
likely error is due to nonuniformity in the 1/4-in magnetic tape which may have 
variations in the coating or carry residual magnetism. The tape transcriber is also a 
possible error source since it occasionally drops a bit. An error particular to the speed 
parameter where the speed is seen to abnormally increase, may be caused by non- 
uniformities in the speed potentiometer winding. A less frequent error type is that 
associated with clock and trigger malfunctions. Instances have been observed where a 
meter has cycled several times in rapid succession or conversely missed one or more 
cycles. These problems are addressed here under the section on timing errors. 
Direction errors are due to mechanical failures in the compass itself. In some cases the 
compass needle failed to contact the resistance ring around the compass while in 
others direction readings in one range all were recorded in a different range. Many of 
these compass problems were apparent in the raw data while others were only 
discovered later by looking at the direction histograms. 

Other problems with Aanderaa RCM4/5 current meters have been noted over the 
years. These can be minimized if the following protocol is observed (assuming that the 
instrument is operational and calibrated): 
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Use a new nonmagnetic battery and load test with a 100 ohm resistor to ensure 
that it meets the manufacturer 's specification. Keep in mind that battery amp- 
hours decrease with decreasing water temperature. 
Do not overfill the supply spool with magnetic tape. Leave a 2 mm space so that 
the tape will not spill off the spool and jam the mechanical mechanism when the 
instrument is tilted or laid on its side. 
Check the tape take-up spool clearance between pinch-rollers spring, circlip, and 
frame. Spin spool by hand. Check for space between the feed spool and pressure 
sensor (if installed). Wrap 20 turns of leader on the take-up spool and check the 
clutch tension. 
Check that both spool nuts are in place and do not over-tighten. Do not over- 
tighten the nylon rotor pivot screw. 
Ensure that no ferrous metal screws are used near the compass. Replace these 
with stainless steel or brass. Also, do not use a ferrous bar to balance the direction 
vane-- i t  may be close enough to cause the compass to "stick" and ruin the 
directional data. 
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Figure 3.16. A plot of hourly data obtained from an Aanderra RCM4 current meter moored at 30 m 
depth data in 250 m of water near the entrance to Juan de Fuca Strait (48 ~ 3.3'N, 125 ~ 18.8'W) during 
the period 8-16 May 1993. (a) Ambient pressure (~ instrument depth in meters); (b) East-west (u) 
component of velocity (m/s); (c) North-south (v) component of velocity (m/s); (d) Velocity stick vector 
(m/s). Erroneous current velocity values ("spikes") stand out in the (u, v) records. Flow consisted of 
moderate tidal currents superimposed on a surface estuarine outflow that weakened around May 13. 

(6) Inspect the O-ring for cuts or nicks and do not trap loose wiring under the ring 
seat when closing the case. Leakage of small amounts of water to the bottom of the 
instrument case can cause electrical malfunctions when instrument tilts. 

(7) Do not jam a spinning rotor with tissue paper or other material prior to 
deployment. It is better to shield rotor from wind while on deck. Too often the 
instrument is recovered with the material still jammed in place. 

(8) It is essential to hand-record accurate times for the first and last data records. 
Make sure the time zone is recorded. Record the time the instrument enters the 
water on deployment and leaves the water on recovery. More problems can be 
linked to poor bookkeeping than any other cause. 

(9) Spin the rotor in multiples of 24 times (or some multiple of four) to ensure that 
sampling interval and rotor counter switch (if applicable) are correct. 

Another standard method for isolating large errors is to compute a histogram of the 
sample values. This amounts to completing step 1 in a goodness of fit calculation since 
a histogram is nothing more than a diagram showing the frequencies of occurrence of 
sample values. While this is a very straightforward procedure some care must be taken 
in selecting the parameter intervals, or bins, over which the sample frequencies are 
calculated. If the bins are too large, the histogram will not resolve the character of the 
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sample PDF and the effects of large error values will be suppressed by being grouped 
with more commonly occurring values. On the other hand, if the bins are too narrow, 
individual values take on more influence and the resulting distribution will not 
appear smooth. This makes it difficult to "see" the real shape of the distribution. 

The use of a histogram in locating large errors is that it readily identifies the 
number of widely differing values that occur and shows whether these divergent 
values fit into the assumed PDF for the assumed variable. In other words, we can not 
only see how many values ("outliers") differ widely from the mean values, but also 
determine if the number  of large values in the sample is consistent with the expected 
distribution of large values for the population. Thus, we have an added guideline for 
deciding whether the sample values should be retained or eliminated for subsequent 
analysis. Both PDFs and histograms use visual means of detecting large error values. 
It is possible to use more automated and objective techniques, such as eliminating all 
values that exceed a specified standard deviation (e.g. +3a). However, these approach- 
es have the weakness that they must first consider all data points, including the 
extreme values, as valid in order to determine decision levels for selecting or rejecting 
data. Here, we could use an iterative process in which the values outside the accepted 
range are omitted from each subsequent recalculation of the mean and standard 
deviation, until the remaining data have near constant statistics with each new 
iteration. Large errors, which are usually easy to spot using visual editing techniques, 
should be removed before proceeding to a more objective step involving the detection 
of less obvious random deviations. An objective technique for identifying outlier 
values is to compute a function which selects extremes of the population such as the 
first derivative of the measured variable with respect to an independent parameter. An 
example would be a time series of temperature measured from a line in a satellite 
image. After the extreme gradients are identified in the first derivative calculation, 
there is still the question of how widely the extremes should be allowed to differ from 
the rest of the population and whether a value should be considered as an error value 
or as simply as a maximum (or minimum) of the process being observed. 

In making such a decision, it is necessary to have an estimate of the variability of the 
process. As discussed above, the dispersion of the population dis t r ibut ion is best 
represented by the variance or the standard deviation. If we are dealing with a normal 
population, we know that the standard deviation specifies the spread of the distribution 
and that 66% of the population values lie within # + cr while 95% of these values are in 
the interval # + 2~. Beyond # + 3~ lie only 0.26% of the total frequency of occurrence, 
leaving 99.74% within this interval. Thus, it is again a matter of probabilities and 
significance level; and we must choose at what level we will reject deviations from the 
mean as errors. If we choose to discard all measurements beyond 2or, we will have 
retained 95% of the sample population as our new sample population for which we will 
repeat out estimation of the statistics. This suggests that we will make our statistical 
estimate twice; first to decide what data to retain, and second to make statistical 
inferences about the behavior exhibited by the revised sample data. It is customary to 
use a much coarser sub-sampling interval, or to use broadly smoothed data, to compute 
the initial sample standard deviations for the purposes of editing the data. For our TS 
curve example (Figure 3.15), we might initially have used a computational interval of 1 
or 2~ to compute a standard deviation for the first-stage editing and then have used 
the newly defined sample population (original sample minus large deviations > 2~ 
to recalculate the mean and standard deviation with a resolution of 0.1~ closer to the 
measurement accuracy for reversing thermometers. In statistical analysis we should 
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not expect to exceed the inherent accuracy and resolution of our data. Modern 
computing facilities, and even pocket calculators, make it tempting to work with many 
decimal places despite the fact that higher place values are not at all representative of 
the ability of the instrument to make the oceanic measurement. 

A form of two-step editing is used in the routine processing of CTD data which is 
typically sampled at ~ 25 samples/s per channel (~ 25 Hz/channel). Since these instru- 
ments produce many more data than we are capable of examining, both smoothing and 
editing procedures are often built into the routine processing programs. The steps involved 
with processing calibrated CTD data at the Institute of Ocean Sciences are as follows: 

(1) Write the data to a file for display on a computer screen using an interactive 
editing program written for the particular data set. 

(2) Examine all data for a given set of parameters by displaying the data 
simultaneously on a computer monitor; as a consistency check, it is important 
to know if large errors in one paramater such as temperature, are associated with 
some real feature in another parameter, such as salinity. 

(3) With the cursor, eliminate erroneous values collected near the ocean surface 
where the probe rises in and out of the water with the roll of the ship. 

(4) Using the file in (3), calculate the pressure gradient versus depth for the data and 
eliminate those data values for which the depth is decreasing with time for a 
downcast and increasing with time for an upcast (wave action eliminator). 

(5) Using the file of (4), produce a hardcopy plot of the entire profile plus an 
expanded version for the upper ocean (say 0 to 300 m depth). 

(6) On the hardcopy, "flag" erroneous values and irregularities in all data channels. 
(7) Use the interactive screen display to eliminate "bad" data identified in (5). If gaps 

between data points are small, linearly interpolate between adjacent values. 
(8) Smooth the edited file by averaging values over a specified depth range. Typically, 

1-m averaged files are generated for profile data and 1-s averaged files for time- 
series data. 

Because of improved CTD technology in recent years, step (8) is often conducted 
first. Thi~step is then eliminated or replaced with a larger averaging interval such as 
5m.  

Fofonoff et al. (1974) used a 1/2~ average (15 scans) to smooth the measured 
pressure series. From this smoothed set, a 10th decibar pressure series was generated. 
Even with the smoothing, the pressure was oversampled, with roughly two 
observations for each pressure interval. The goal of this computation was to produce 
a uniform pressure series that could be used to generate profiles of T and S with depth. 
Processing routines could be added that first sorted out spurious extreme T and S 
values, based on a running mean standard deviation, and which ensured that the 
pressure series was monotonically increasing. This would correct for small variations 
in the depth of the probe due to ship motion or strong current shear. Also, in making 
these editing decisions we should always keep in mind the instrument characteristics 
and not discard data well within the noise level of the measurement system. 

When editing newly collected data, we should always consider what is already known 
from similar, or related measurements in order to detect obvious errors. A typical example 
is the use of TS curves to evaluate the performance of sample bottles in a hydrocast. Since 
TS curves are known to remain relatively stationary for many areas, previously sampled 
TS curves for an area can be used to locate data points that may have been caused by the 
erroneous performance of a water sampler; these are generally due to inadvertant bottle 
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"trips" in which the sampler likely closed before or after the desired depth was achieved. 
Prior TS curves also have served as a means of interpolating a particular hydrocast or 
perhaps providing salinities to match measured temperatures. This approach is limited, 
however, to those areas and those parameters for which a sufficient number of existing 
observations are available to define the mean state and variability. In many areas, and for 
many parameters, information is too limited for existing data to be of any real use in 
evaluating the quality of new measurements. As a matter of curiosity, it would be 
interesting to determine the numbers of deep hydrocast data that were unknowingly 
collected at hydrothermal venting sites and discarded because they were "erroneous". 
Anomalously high temperatures would be difficult to justify if one did not know about 
hydrothermal circulation and associated buoyant plumes. 

In contrast to large accidental errors, which lead to large offsets or systematic biases, 
random errors are generally small and normally distributed. These errors often are the 
result of inaccuracies in the instrumentation or data collection procedures and 
therefore represent the limit of our ability to measure the desired variable. Added to 
this is our inability to completely resolve the inherent variability in a particular 
parameter. This too may be a limitation of our instrument or of our sampling scheme. 
In either case, when we cannot directly measure a scale of oceanic variability that 
contributes to the alias of our measurement, the variability will form part of the 
uncertainty in the final calculated value. 

The theory of random errors is well established (Scarborough, 1966). The funda- 
mental approach is to treat the errors as random numbers with a normal PDF. Basic to 
this assumption is that positive and negative errors of the same size occur in about 
equal number and tend to cancel each other. This suggests that the appropriate way to 
treat data containing random errors is in terms of mean-square (MS) and root-mean- 
square (RMS) values. Another fundamental assumption is that the probability of an 
error occurring depends inversely on its magnitude; thus, small errors are more 
frequent than large ones. Following the first of these two assumptions, the PDF of the 
random errors might be written as 

P(~x) =f(~x 2) (3.16.1) 

where p is the PDF of the errors cx. The second characteristic requires that the 
probability decreases with increasing Cx so we can write for any real constant, k 

P(r Cexp ( 2 2 = - k  Cx) (3.16.2) 

Using the fact that the integral under the curve of any PDF is unity, we solve for C 
and get 

k 
P(~x) = - ~ e x p  (-k2cx 2) (3.16.3) 

This expression is known as the probability equation or the error equation. A graph of 
the function gives the normal or Gaussian probability curve. The term k is a constant 
called the index of precision and sets both the amplitude and the width of the normal 
curve. As k increases, the normal curve becomes narrower and the errors get smaller, 
making the measurement more precise. (This description applies only for small 
random errors and not to systematic errors.) 
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3.16.2 Propagation of error 

Suppose we have a quantity, F, which is calculated from a combination of a number 
(n) of independently observed variables. For example, F might be oceanic heat 
transport computed from independent velocity and temperature profiles, x. We can 
estimate the combined random error of F as the sum of squared errors of the indivi- 
dual variables provided that the errors are independent of the variables and that they 
are all normally distributed. As a simple example, let F be a linear combination of our 
measurement variables, x 

F - alXl + a2x2 + ... + aNXN (3.16.4) 

where al, ..., aN are constants. The inverse of the squared error or index ofprecision (H) 
of F can be written 

1 _a~  ~_a22 + ... + a  2 ~ a ~  (3 16.5) 

= , = 1  

where hi is the error for the ith measurement, xi. 
A more generalized formula for error calculations for arbitary F for which the 

contibuting variables are uncorrelated is 

1 (OF/Oxl) 2 (aF/Ox2) 2 (OF/OxN) 2 
-- + + . . . +  

m h2 

N (OF/Oxi)2 

i=1 

(3.16.6) 

where partial derivatives OF/Oxi a r e  obtained from Taylor expansions of the function 
F in terms of the independent variables xi. To convert this expression to one in terms 
of relative errors, we use the fact chat 

1 re 2 (3 16.7) 
h 2 p 2 

where re is the corresponding relative error and p = 0.4769 is a constant obtained from 
the error equation (3.16.3). Using this definition we can write our final error as 

Re -- [(OFIoqxl)2r~ + (OFlOx2)2r~ + ... + (OFlOxN)2r2]  1/2 (3.16.8) 

In this form, Re is really only the RMS error that describes the equivalent combined 
error in the equation of interest. This Taylor expansion of the contributing error terms 
is known as the propagation of errors formula. It is limited to small errors and un- 
correlated independent variables. Since these principles apply only to small random 
errors, it is necessary to use some data editing procedure to remove any large errors or 
biases in the measurements before using this formula. By using a mean-square 
formulation, we take advantage of the fact that small random errors can be expected to 
often cancel each other resulting in a far smaller mean-square error than would result 
if the measurement errors were simply added regardless of sign to yield a maximum 
"worst case error". The primary application of equation (3.16.8) is in determining the 
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overall error in a quantity derived from a number  of component variables all with 
measurement  errors. This is a situation common to many oceanographic problems. 

A more complicated propagation of error formula is needed if there is a nonzero 
correlation between the independent variables, x. In this case, we must also retain the 
covariance terms in any Taylor expansion of the small error terms. For example, the 
density p is a function of both temperature T and salinity S so that the errors 
(variances) in density O-2p can be related to the measurement errors in temperature cr 2 
and salinity cr~ by 

~p2 _ (Op/OT)2cr2 T + (0p/c9S)2~2 + 2[(Op/OT) . (Op/OS)]C(T,S) (3.16.9) 

where C(T, S) is the covariance between temperature and salinity fluctuations. Only 
when C(T, S) - 0 do we get the result (3.16.8). An example of a detailed error 
calculation is the measurement  of flow through trawl nets towed at various angles 
through the water column is given in Burd and Thomson (1993). 

3.16.3 Dealing with numbers: the statistics of roundoff 

Since we must represent all measurements in discrete digital form, we are forced to 
deal with the consequences of numerical roundoff, or truncation. The problem results 
from the limitations of digital computing machines. For example, the irrational 
fraction 1/3 is represented in the computer as the decimal equivalent 0.3333 ... 3 with 
an obvious roundoff effect. This may not seem to be a problem for most applications 
since most computers carry a minimum of eight decimal places at single precision. 
The large number of arithmetic operations carried out in a problem lasting for only a 
few seconds of computer processing time can, however, lead to large errors in due to 
roundoff and truncation errors. The case of greatest concern is when two nearly 
identical numbers are subtracted, requiring proper representation to the smallest 
possible digit. Such differences can easily occur unknowingly in a complicated 
computational problem. Rather than discuss procedures for estimating this roundoff 
error, we will discuss the nature of the problem and emphasize the need to avoid 
roundoff. 

General floating-point values (decimal numbers) in a computer follow closely the" 
so-called "scientific notation" and are represented as a mantissa (to the right of the 
decimal point) and an exponent (the associated power of 10). For example, in a three- 
digit system, the number  64.282 would be represented as 0.643 • 102 where the 
roundoff is accomplished by adding five in the thousands' decimal place and then 
truncating after the third digit. This process of rounding off results in a slight bias 
because it always rounds up when there is a 5 in the least significant digit. A way to 
overcome this bias is to use the last digit retained to determine whether to round up or 
down when the next digit is exactly 5. This rule, which leads to the least possible error, 
is to round-up if the next to the last digit retained is odd and to round down when it is 
even. This procedure can be summarized as follows. When rounding a number to k 
decimals: 

(1) if the k + 1 decimal is 0, 2, 4, 6, 8 then the k decimal is unchanged; 
(2) if the k + 1 decimal is 1, 3, 5, 7, 9 then the k decimal is increased by 1. 

This system of rounding-off will result in errors that are generally less than 0.5 • 10 -k 
and maximum roundoff errors of 0.6 • 10 -k. In most applications, the effect of this 
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roundoff bias is too small to justify the added numerical manipulation required to 
implement this even-odd roundoff scheme. 

In computing systems, floating-point numbers are handled in a binary 
representation having 24 bits (wordlength is 32 bits but eight bits are used for the 
exponent) which results in seven significant decimal digits. Called single precision, this 
level of accuracy is adequate for many computations. For those problems with 
repeated calculations, and the subsequent high probability of differencing two nearly 
identical numbers, a double-precision representation is used which has 56 binary bits 
leading to 16 significant decimal digits. Roundoff, in the case of double precision, 
results in very small biases which can be completely ignored for most applications. 
Another approach to the problem of roundoff errors is to consider them to be random 
variables. In this way, statistical methods can be applied to better understand the 
effects of roundoff errors. Consider the roundoff of a single number x; for this number, 
all numbers occurring in the interval Xo- 1/2 < x < Xo + 1/2 (measured in units of the 
last digit) become that number. Thus, the roundoff has a uniform probability 
distribution in the last digit. We can write the corresponding probability density 
function f(x) for x as 

1 (Xo- 1/2, Xo +�89 (3 16.10) 
f (x) - O, elsewhere 

and note that 

OG 

f f (x)  d x -  1 
- - 0 0  

(3.16.11) 

The most common measures of a PDF are its first two moments, the mean and 
variance. The mean off(x) in equation (3.16.10) is Xo and the variance is 

xo+l/2 +1/2 

V [ f ( x ) ] - o  2 =  / [X-Xo]f(x) d x - - /  xt2dxt=L12 (31612). . 

xo-1/2 -1/2 

Experimental tests have verified the uniform distribution of roundoff in computer 
systems. In fact, computers generate random numbers by using the overflow value of 
the mantissa. 

We can represent roundoff as an additive random error (e) superimposed on the 
true variable (x). In this case, we can write the computer representation of our variable 
(which we assume is free from measurement and sampling errors) as x + c. For a 
floating-point number system, it is better to use 

x(1 + e); It] < �89 -2 ) (3.16.13) 

for the variable with roundoff error e. This formulation has the effect of focusing 
attention on the consequences of roundoff for every application in which it appears. 
For example, the product 

Xl(l -+- C1)X2(1 -k- Q) = XlX2(l -+- E'I -+" E'2 + E'IE2) (3.16.14) 

demonstrates how roundoff propagates during multiplication. Generally, the product 



276 Data Analysis Methods in Physical Oceanography 

6`16`2 is sufficiently small to be ignored. However, in the above multiplication we must 
include the roundoff for this operation, whereby (3.16.14) becomes 

x3(1 + 6`3) - XlX2(1 + 6̀ 1 + C2 + 6`) (3.16.15) 

16̀ 1 < �89  6"3 -- 6`1 + 6`2 + c 

Similar error propagation results are found for other arithmetical operations. 
We can extend this to a generalized product 

yl(1 + 6`1)Y2(1 + e 2 ) . . . y N ( 1  + eN) (3.16.16) 

which becomes 

YlY2 ...yN[1 + (6`1 + 6̀2 -+- ... -+- CN)] (3.16.17) 

By the central limit theorem, the sum of n independent random numbers (the 
roundoff errors) approaches a normal distribution. The effect for the other operations 
is much the same; therefore, while individual roundoffs are from a uniform 
distribution, the result of many arithmetic roundoff operations tends toward a normal 
distribution. This also can be demonstrated experimentally. 

As stated earlier, we will generally ignore roundoff as a source of error in the 
processing and analysis of oceanographic data. The above discussion has been 
presented here to make the reader aware of potential problems and provide some 
familiarity with the problems of using computing systems. In most data applications, 
the effects of roundoff error are small enough to be ignored. Only in the case of 
recursive calculations, where each computation depends on the previous one, do we 
anticipate large roundoff errors. This is usually a problem for numerical modelers 
who must deal with the repeated manipulation of computer-generated "data". In cases 
where roundoff errors are of some consequence, statistical methods can be used in 
which the errors can be treated as variables from a normal population. 

3.16.4 Gauss-Markov theorem 

The term Gauss-Markov process is often used to model certain kinds of random 
variability in oceanography. To understand the assumptions behind this process, 
consider the standard linear regression model, y = a +/3x + 6̀ , developed in the 
previous sections. As before, a , /3  are regression coefficients, x is a deterministic 
variable and 6̀  a random variable. According to the Gauss-Markov theorem, the 
estimators c~,/3 found from least squares analysis are the best linear unbiased estimators 
for the model for the following conditions on 6̀ : 

(1) The random variable e is independent of the independent variable, x; 
(2) e has a mean of zero; that is E[e] = 0; 
(3) Errors 6̀ j and 6̀k associated with any two points in the population are independent 

of one another; the covariance between any two errors is zero; C[ej, 6`k] = 0,j =/= k; 
(4) 6̀  has a finite variance ~ # 0. 

The estimators are unbiased since their expected value equals the population values 
(given 1 and 2) and they are best in that they are efficient (if 3 and 4 hold true), the 
variance of the least-squares estimators being smaller than any other linear unbiased 
estimator. A further assumption that is often made is that the errors, 6̀ , are normally 
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distributed. In this case, the estimators of a,/3, and # using the least-squares 
requirements are identical to the estimators resulting from the use of maximum- 
likelihood estimation. This assumption, combined with the four previous assump- 
tions, provide the rationale for the least-square procedure. 

3.17 I N T E R P O L A T I O N :  F I L L I N G  T H E  D A T A  GAPS 

Most analysis procedures used in the physical sciences are designed for comparatively 
long and densely sampled series with equally spaced measurements in time or space. 
The wealth of information on time-series analysis primarily applies to regularly 
spaced and abundant observations. There are two main reasons for this: (1) the 
mathematical necessity for long, equally-spaced data for the derivation of statistically 
reliable estimates from modern analytical techniques; and (2) the fact that most 
modern measurement systems both collect and store data in digital format. Spectral 
estimates, for example, improve with increased duration of the data series in the sense 
that one is able to cover an increasing range of the dominant frequency constitutents 
that make up the record. Digital sampling systems are considerably more economical 
than analog recording systems in that they cut down on storage space, power 
consumption and postprocessing effort. 

3.17.1 Equally and unequally spaced data 

Electronic systems now provide data at regularly spaced sampling increments. 
Unfortunately, such systems usually operate autonomously and any type of equipment 
failure generally leads to either data gaps or a premature termination of the record. 
The failure of electronic data logging systems is but one source of gappy records in 
physical oceanography. Because of their very nature, shipborne measurements are a 
source of gappy records. Oceanographic research vessels are expensive platforms to 
operate and must be used. in an optimal fashion. As a consequence, it is often 
impossible to collect observations in time or space of sufficient regularity and spacing 
to resolve the phenomenon of interest. Efforts are usually made to space measure- 
ments as evenly as possible but, for a variety of reasons, station spacings are often 
considerably greater than desired. Weather conditions, as well as ship and equipment 
problems, almost invariably lead to unwanted gaps in the data set. Sometimes 
equipment failures are not detected until the data are examined in the laboratory. In 
addition, editing out errors produces unwanted gaps in the data record. 

The gap problem is even more severe when one is analyzing historical data or data 
collected from "platforms of opportunity." Historical data are a collection of many 
different sampling programs all of which had different goals and therefore very 
different sampling requirements. By its very nature, such collections of data will 
necessarily be irregularly spaced and variable in terms of accuracy and reliability. 
Further editing, dictated by the goals of the historical data analysis project, will add 
new gaps to the set of existing data series. 

Monitoring stations, ships of opportunity, and satellite measurements frequently 
produce data series that are unevenly spaced. The geographic distribution of 
monitoring stations (e.g. Pacific island sea-level stations) is far from uniform in 
terms of the spacing between stations. Thus, while the data series collected at each 
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station, may themselves consist of evenly and densely spaced measurements in time, 
the space intervals between stations will be highly irregular. Open ocean buoys and 
current meter moorings also fit this classification of densely and evenly spaced 
temporal observations at widely and often irregularly spaced locations. Here again, 
any failure in the recording system, whether minor or catastrophic, will lead to gaps in 
the time-series record. Often these gaps are quite large since unplanned recovery 
efforts are required to correct the problem. Such a correction effort assumes the 
telemetering of data which is at present not widely done. Failures of on-board 
recording systems must wait until the scheduled servicing of the instrument which 
may then result in relatively large data gaps. 

At the other end of the sampling spectrum satellite observing systems provide dense 
and evenly spaced measurements that are often very irregular in time. A familiar 
source of temporal gaps, in infrared image series, is cloud cover. Both occasional and 
persistent cloud cover can interrupt a sequence of images collected to study changes of 
sea surface temperature. The effects of cloud cover apply also to satellite remote 
sensing in the optical bands. In addition to the cloud-cover problem, there are often 
problems with the on-board satellite sensing systems or associated with the ground 
receiving station that lead to gaps in time series of image data. Microwave sensing of 
the surface is not as sensitive to cloud attenuation but it is subject to sensor and 
ground-recording failure problems. 

Platforms of opportunity (usually merchant ships) produce uniquely irregular sets 
of measurements. Most merchant ships repeat the same course with minor 
adjustments for local weather conditions and season. A seasonal shift in course is 
generally seen at higher latitudes to take advantage of great circle routes during times 
of better weather. A return to lower latitudes is seen in winter data as the ships avoid 
problems with strong storms. Added to the seasonal track changes is the nature of the 
daily sampling procedure. Usually the ship takes measurements at some specified 
time interval which, due to variations in ship track, ship speed and weather 
conditions, may be at very different positions from sailing to sailing. Thus, the 
merchant ship data will be irregular in both space and time. Systems that operate 
continuously from ships of opportunity (e.g. injection SST) overcome this problem. 
These continuous measurements, however, are still subject to variations in ship track. 

The net result of all these measurement problems is that oceanographers are often 
faced with short records of unequally spaced data. Even if the records are long they are 
often gappy in time or space. It is, therefore, necessary to interpolate these data to 
produce series of evenly spaced measurements. While some analysis procedures, such 
as least-squares harmonic analysis, apply directly to uneven or gappy data, it is more 
often the case that irregularly spaced data are interpolated to yield evenly spaced, 
regular data. These interpolated records can then be analyzed with familiar methods 
of time-series analysis. 

Interpolation also may be required with evenly spaced data if the subject dynamics 
apply to smaller space/time scales than are resolved by the measurements. Thus, the 
data points that are interpolated produce another set of regularly spaced points with a 
finer resolution. Many interpolation procedures have been developed that only apply 
to evenly spaced data. 
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3.17.2 Interpolation methods 

Interpolation techniques are needed for both irregularly spaced and evenly spaced 
data series. Before deciding which interpolation method is most effective, we need to 
consider the particular application. A series of appropriate questions regarding the 
selection of the best interpolation procedures are: 

(1) What samples (original data series, derivatives, etc.) should we use? 
(2) What class of interpolation function (linear, higher-order polynomial, cubic- 

spline, etc.) best satisifies the dynamical restrictions of the analysis? 
(3) What mathematical criteria (exact data-point matching, least-squares fit, conti- 

nuity of slopes, etc.) do we use to derive the interpolated values? 
(4) Where do we apply these criteria? 

Answers to these questions serve as guides to the selection of a unique interpolation 
procedure. 

3.17.2.1 Linear interpolation 

The type of interpolation scheme to be employed depends on how many data points we 
want our interpolation curve (polynomial) to pass through. Increasing the number of 
points we want our curve to fit, increases the order of the polynomial we need to do the 
fitting. The most straightforward and widely used interpolation procedure is that of 
linear interpolation. This consists of fitting a straight line between two data points and 
choosing interpolated values at the appropriate positions along that line. For a data 
series y(x),  this linear procedure can be written as 

x - a [y(b) - y(a)] 
y(x)  - y ( a )  + b a 

(b - x)y(a) + (x - a)y(b) 

b - a  

(3.17.1) 

where Xstar t - "  a and Xen d = b are the times (positions) of the data collection at the start 
end end of the sampling increment being interploated, and x represents the 
corresponding time (position) of the desired interpolated value within the interval 
[a, b]. This is the customary procedure for interpolating between values in most tables. 
The same formula can be applied to extrapolation (extending the data beyond the 
domain of the observations) where the point x lies beyond the interval [a, b]. Equation 
(3.17.1) is a special case of the Lagrange polynomial interpolation formula discussed 
in the next section. 

3.17.2.2 Polynomial  interpolation 

If we wish to interpolate between more than two points simultaneously, we need to use 
higher-order polynomials than the first-order polynomal (straight line) used in the 
previous section. For example, through three points we can find an unique polynomial 
of degree 2 (a quadratic); through four points, an unique polynomial of degree 3 (a 
cubic), and so on. The two methods described below are computationally robust in the 
sense that they yield reasonable results at most points. Polynomial interpolation 
techniques such as Vandermonde's method and Newton's method are awkward to 
program and suffer from problems with roundoff error. 
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3.17.2.2.1 Lagrange's method 

The Lagrange polynomial interpolation formula is a method for finding an 
interpolating polynomial y(x) of degree N which passes through all of the available 
data points (xi, Yi); i = 1, 2, ..., N 4- 1. The general form for this polynomial, of which 
linear interploation is a special case, is given as 

N 
y ( x )  - ao + a l X  -Jr- a2 x2 -]- ... --]- aN  x N  --  ~ ~lk xk  

k=0 

/NI~ (3.17.2) 
X -- X k 

- -  i x i  Xk 
i=1 ~ k = l  

k#i 

where H is the product function. Note that in the product function, the ith termm 
corresponding to the particular data point, xi, in the denominatorDis not included 
when calculating the product for the term involving xi. Even though k ranges from 1 to 
N + 1, II uses only N terms and the final polynomial is of order N, as required. 

The goal of the Lagrange interpolation method is to find an Nth degree polynomial 
which is constrained to pass through the original N + 1 data points and which yields a 
"reasonable" interpolated value for any position x located anywhere between the 
original data points. To see that the polynomial passes through the original data 
points, note that the ith product function, H i ,  defined for the data point xi in the 
denominator is constructed in such a way that IIi(xj; xi) - ~50 whenever x = x i is one of 
the data values (~5ij is the Kronecker delta function). This means that lIi(xj; xi) = 0 for 
all xj except for the specific value x = xi found in the original data series which 
matches the term in the denominator. In that case, Hi(xj; xi) = 1 andyilIi(xj; xi) =yj  

The general polynomial we seek is constructed as a sumof  the product functions in 
equation (3.17.2) which can be expanded to give 

N+I 

y(x) -- ~--~yi[Qi(x)/Qi(xi)] (3.17.3) 
i=1 

in which 

Q i ( x )  - ( x  - Xl) (X - x 2 ) . . .  (x - Xi_ l ) (X - X i + l ) . . .  (x  - XN+I)  (3.17.4) 

is the product of all the factors except the ith one. For any x, (3.17.3) can be expanded 
to give the interpolating polynomial 

( X - - X z ) ( X - - X 3 ) . . . ( X - - X N + I )  ( X - - X l ) ( X - - X 3 ) . . . ( X - - X N + I )  

y ( x )  = Y l  (Xl -- X2)(Xl -- X3) . . . (Xl  -- XN+I)  -FY2 (X2 -- XI)(X2 -- X3).. .(X2 -- XN+I)  

(x -xl)(x -x2)...(x -XN) 
-F ... - F Y N  (XN+I -- X l ) (XN+I  -- X3) . . .  (XN+I -- XN) 

(3.17.5) 
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Note that, for the original data points, x = xi, the polynomial yields the correct output 
value y(xi) = Yi, as required. 

In the Lagrange interpolation method, the calculation is based on all the known 
data values. If the user wants to add new data to the series, the whole calculation must 
be repeated from the start. Although the above formula can be applied directly, 
programing improvements exist that should be taken into account (Press et al., 1992). 
Use of Neville's algorithm for contructing the interpolating polynomial is more 
efficient and allows for an estimate of the errors resulting from the curve fit. 

As an example of this interpolation method, consider four points (xi, Yi), i = 1, ... ,  4 
given as (0, 2), (1, 2), (2, 0) and (3, 0) through which we wish to fit a (cubic) poly- 
nomial. Substituting these values into equation (3.17.5), we obtain 

y(x)  = 2 (x - 1)(x - 2)(x - 3) 
( 0 - 1 ) ( 0 - 2 ) ( 0 - 3 )  

2 3 7 = ~x - 3x 2 + ~x + 2 

+ 2 ( x - O ) ( x - 2 ) ( x - 3 )  
( 1 - 0 ) ( 1 - 2 ) ( 1 - 3 )  

+ 0 + 0  

The resulting third-order curve is plotted in Figure 3.17. 

3.17.2.3  Spline interpolation 

In recent years, the method that has received the widest general acceptance is the 
spline interpolation method. Splines, unlike other polynomial interpolations such as 
the Lagrange polynomial interpolation formula, apply to a series of segments of the 
data record rather than the entire data series. This leads to the obvious question to ask 
in selecting the proper interpolation procedure: Do we want a single, high-order 
polynomial for the interpolation over the entire domain, or would it be better to use a 
sequence of lower-order polynomials for short segments and sum them over the 
domain of interest? This integration is inherently a smoothing operation but one must 
b~-careful of discontinuities, or sharp corners, where the segments join together. 
Spline functions are designed to overcome such discontinuities, at least for the lower- 
order derivatives. It is because discontinuities are allowed in higher-order derivatives 
that splines are so effective locally. Constraints placed on the interpolated series in 
one region have only very small effects on regions far removed. As a result, splines are 
more effective at fitting nonanalytic distributions characteristic of real data. The term 
"spline" derives from the flexible drafting tool used by naval architects to draw 
piecewise continuous curves. 

Splines have other favorable properties such as good convergence, highly accurate 
derivative approximation, and good stability in the presence of roundoff errors. 
Splines represent a middle ground between a purely analytical description and 
numerical finite difference methods which break the domain into the smallest pos- 
sible intervals. The piecewise approximation philosophy represented by splines has 
given rise to finite element numerical methods. 

With spline interpolation, we approximate the interpolation function y(x)  over the 
interval [a, b] by dividing the interval into subregions with the requirement that there 
be continuity of the function at the joints. We can define a spline function, y(x),  of 
degree N with values at the joints 
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Figure 3.17. Use of Lagrange's method to fit a third-order (cubic) polynomial through the data points (x, 
Yi) given by (0, 2), (I, 2), (2, 0), and (3, 0). 

a = u o  ~Ul  ~ u 2 . . .  < _ u N = b  (3.17.6) 

and having the properties: 

(1) In each interval ui-1 <_ x <_ u i ( i - - 1 ,  m), the function y(x) is a polynomial of 
degree not greater than N. 

(2) At each interior joint, y(x) and its first N -  1 derivatives are continuous. 

The spline function in widest use is the cubic spline (N = 3). To give the reader 
familiarity with the spline interpolation technique, we will develop the cubic spline 
equations and work through a simple example. Consider a data series with elements 
(xi, Yi), i - 1,..., N. Since we are working with a cubic spline interpolation, the first 
two dervivatives y'(x)  and y"(x)  of the interpolation function, y(x),  can be defined for 
each of the points xi while the third derivative y'"(x) will be a constant for all x."Here, 
the prime symbol denotes differentiation with respect to the independent variable x. 
We write the spline function in the form 

y(x)  =)~(x); Xi <_ X < Xi+l, i = I, ..., N -  1 (3.17.7) 

and specify the following conditions at the junctions of the segments: 

(1) Continuity of the spline function: 

fi(xi) = y(xi) = yi, i = 1, 2, ..., N -  1; 

j~_l(Xi) =y(x/)  =Yi, i =  2, 3, ..., N; 
(3.17.8a) 

(2) continuity of the slope: 

fi'_l(xi) =fi'(x/), i =  1, 2, ..., N -  1; (3.17.8b) 

(3) continuity of second derivative: 

f/'_l (Xi)--fitt(Xi), i -  1, 2, ..., N -  1; (3.17.8c) 
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Since y ' " ( x )  =cons tan t ,  yP'(x) must be linear, so that 

fitt(xi) _ y ; ,  (Xi+I -- X) 
Xi+l -- Xi 

_ y ,  (x - -  Xi) 
i+1 

Xi+l -- Xi 

283 

(3.17.9) 

Integrating twice and selecting integration constants to satisfy the conditions (3.17.8a, 
b) on fi(xi) and Jr,- l(Xi) gives 

(Xi+I - - X )  (X - - X i )  

f ( X )  = Y i  (Xi+I -- Xi)  q -Y i+l  (Xi+I -- Xi) 2{ 13} (Xi+I - -  Xi) .y;, (Xi+I - x) r (xi+, - x) 
-- 6 (X~'+; X/i -- L(~--/-/~i+/ ; i ) '  xi,>{  ,x_xi, 3} 
_ (xi+  - ( x  - x i )  _ ( x - L  x i )  

6 ,+1 (Xi+l - x i )  1 - 

(3.17.10) 

which uniquely satisfies the continuity condition for the second derivative but not, in 
general, for the first derivative (slope). To ensure continuity of the slope at the seams, 
we expand (3.17.9) by differentiation to get 

~. t (Xi)_ ( Y i + I - - Y i )  (Xi+I--Xi) (2y I, +YI+I) (3 17.11a) 
Xi+I -- Xi 6 

f[_l (xi) : (Yi - Yi-1 ) (Xi+l - xi) (YI'- 2y!') (3 17 11 b) 
X i + l  - -  X i  - -  6 ~ + ' j " " 

We then set (3.17.11a) and (3.17.11b) equal in order to satisfy slope continuity 
(3.17.8b), whereby 

)y" (xi - Xi-l~. i-1 + 2[(Xi+l - xi-1)lyl ~ + (xi+l - xi)Yi+l 

= 6 (Yi+I - y i )  ( Y i - y i - 1 )  
- , i = 2 ,  . . . ,  N -  1 ( 3 . 1 7 . 1 2 )  

Xi+l - - X i  Xi ~ X i - 1  

which must be satisfied at N - 2 points by the N unknown quantities, y~'. We require 
two more conditions on the YI' which we get by specifying conditions at the end points 
xl and XN of the data sequence. After specifying these end values, we have N -  2 
unknowns which we find by solving the N -  2 equations. There are two main ways of 

H specifying the end points: (1) we set one or both of the second derivates, y~' andy  N at 
the end points to be zero (this is termed the natural cubic spline) so that the inter~ 

l# polating function has zero curvature at one or both boundaries; or (2) we set e i thery 1 
I! and y N to values derived from equation (3.17.11) in order that the first derivatives of 

the interpolating function, Yl, take on specified values at one or both of the 
termination boundaries. 

As a general example, we consider the spline solution for six evenly spaced points 
with the data interval h = x i . i  - x i  and function d/defined in terms of yi as 

di - - (yi+l - 2 y i - ~ - y i - 1 )  (3.17 13) 
2h 2 
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We can write the equations (3.17.10) for these six equally spaced points in matrix form 
as 

4 1 1 0 Y"2 12d2-y'~/h 
1 4 1 0 y~ _ 12d3 
0 1 4 1 y~ 12d4 
0 0 1 4 y~' 12ds -y~ /h  

(3.17.14) 

i I I  If we want to specify Yi rather than Yi, we need an equation relating both. If the end 
conditions are not known, the simplest choice isy'~ = 0 (the natural spline noted above). 
Another, and smoother choice (in the sense of less inflection or curvature at the 
interpolated point) is yJ~ - 0.05y~'. Although spline interpolation is a global, rather 
than a local, curve (altering a YI' or an end condition affects the overall spline), the 
dominant diagonal terms in equation (3.17.14) cause the effects to rapidly decrease as 
the distance from the altered point increases. 

We should point out the method of splines offers no advantage over polynomial 
interpolation when applied to either the approximation of well-behaved mathematical 
functions or to curve fitting when the experimental data are dense. "Dense" means 
that the number  of data points in a subregion is more than an order of magnitude 
larger than the number of inflection points in the fitted curve and that there are no 
abrupt changes in the second derivative. The advantage of splines is their inherent 
smoothness when dealing with sparse data. 

As a numerical example of spline fitting, we consider the six-point fitting of the 
points represented in equation (3.17.14) for the 11 data points in Table 3.17.1. Using a 
general polynomial fit yields the curve in Figure 3.18. Here, all but one of the first six 
points lie on a straight line. Due to this single point, the polynomial curve oscillates 
with an amplitude that does not decrease. In contrast, the spline amplitude (Figure 
3.19) for the same 11 values reduces each cycle by a factor of 3. 

Often the first or second derivatives of the interpolated function are important. In 
Figure 3.18, we see that fitting a polynomial to sparse data can result in large, 
unrealistic changes in the second derivatives. The spline fit to the same points (Figure 
3.19) using the end-point conditionsy'~ = y ~  - 0  demonstrates the smoothness of the 
spline interpolation. In essence, the spline method sacrifices higher-order continuity 
to achieve second derivative smoothness. 

Spline interpolation is generally accomplished by computer routines that operate 
on the dataset in question. Computer routines solve for the spline functions by solving 
the equation 

N 
[(g(xi) -- yi)/tSyi] 2 -  S (3 .17 .15)  

i=1 

where g(xi) is composed of cubic parabolas 

g(x) = ai + bi(x - xi) + ci(x - xi)  2 +di(x - -X i )  3 (3.17.16) 

for the interval xi ~ X ~ Xi + 1. The terms ~Syi are positive numbers that control the 
amount of smoothing at each point; the larger ~Yi is the more closely the spline fits at 
each data point. A good choice of ~Yi is the standard deviation of the data values. 

The S term also controls smoothing, resulting in more smoothing when S increases. 
As S gets smaller, smoothing decreases and the splines fit the data points more closely. 
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Figure 3.18. A general six-point polynomial fit to the data values in Table 3.17.1. Due to a single point, 
the polynomial curve oscillates with a amplitude that does not decrease with x. 
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Figure 3.19. Cubic spline fit to the data values in Table 3.17.1. Amplitude of each cycle is reduced by a 
factor of three compared to Figure 3.18. 

When S = 0 the data points are fitted exactly by the interpolating spline functions. A 
recommended value of S is N/2 ,  where N is the number of data points. An even 
smoother interpolation can be achieved using splines under tension. Tension is 
introduced into the spline procedure to eliminate extraneous inflection points. An 
iterative procedure is usually used to select the best level for the tension parameter. 

3.17.3 Interpolat ing  gappy records: pract ical  e x a m p l e s  

Gaps or "holes" occur frequently in geophysical data series. Gaps in a stationary time 
series are, of course, analogous to gaps in a homogeneous spatial distribution. Small 
gaps are of little concern and linear interpolation is recommended for filling the gaps. 
If the gaps are large (of the size of the integral time or space scale), it is generally 
better to work with the existing short data segments than to "make up" data by 
pushing interpolation schemes beyond their accepted limitations. For the gray area 
between these two extremes, one wants to know how large the data loss can be and still 
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Table 3.17.1. Data pairs (x, Yi) used for interpolation schemes in 
Figures 3.18 and 3.19 

i xi Yi 

1 0 16 
2 14 19 
3 27 36 
4 33 48 
5 41 53 
6 48 90 
7 62 119 
8 74 120 
9 89 96 

10 99 71 
11 114 36 

permit reasonable use of standard interpolation techniques and processing methods. The 
problem of gappy data in oceanography was addressed by Thompson (1971) who 
suggested that a random sampling of data points might be an optimally efficient ap- 
proach. Further insight into the problem of missing data can found in Davis and Regier 
(1977) and Bretherton and McWilliams (1980). In this section, we present two examples of 
how to deal with gappy data. One is a straightforward analysis by Sturges (1983) who used 
monthly tide gauge data to investigate what happens to spectral estimates when one 
punches holes in the data set. The other is a practical guide to the interpolation of 
satellite-tracked Lagrangian drifter data with its inherently irregular time steps. 

3.17.3.1 Interpolating gappy records for time-series analysis 

Sturges (1983) used a Monte Carlo technique to poke holes at random in a known time 
series of monthly mean sea-level. The original record had a "red" spectrum which fell 
off as f - 3  at high frequencies and contained a single major spectral peak at a period of 
12 months. A total of 120 months of data were used in the analysis. The idea was to 
reconstruct the gappy series using a cubic spline interpolation method and see how 
closely the spectrum from the interpolated time series resembled that of the original 
time series. Data loss was limited to less than 30% of the record length and, for any 
individual experiment,  the holes were all the same length. However, different hole 
lengths were used in successive runs. The only stipulation was that the length of the 
data segment before the next gap be at least as long as the gap itself. The program was 
not allowed to eliminate the first and last data points. 

Cross-spectra were computed between the original time series and the interpolated 
gappy series. For a specified hole size, holes were generated randomly in the data 
series, the cross-spectra computed and the entire process repeated 1000 times. The 
magnitudes of the resulting cross-spectra provided estimates of how much power was 
lost or gained during the interpolation while the corresponding phases was interpreted 
as the error introduced by the interpolation process (Figure 3.20). Several important 
conclusions arise from Sturges' analysis: 

(1) Gaps have a more adverse effect on weak spectral components (spectral peaks) 
than on strong ones embedded in the same background spectrum. 

(2) The phase can be estimated to roughly 10 ~ at the 90% confidence level for data 
losses of over 30% for a strong spectral signal; the requirement is that the gaps are 
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Figure 3.20. Absolute phase errors (~ expressed as a function of percent (%) data lost between the 
original sea level time series and the series with random holes filled in with a cubic spline fit. On each 
line, the ratio/X/T is shown, where As is the length of the gap and T is the spectral period of interest; the 
value 0.5 means that the holes were four units (months) long and the period 8 units long. Results are 
shown for the 90 and 99% confidence limits (lower and upper lines for each case). (From Sturges, 1983.) 

kept to about 1/3 of the period of the signal being examined. If the gaps are 1/2 of 
the period, the data loss can still be about 20%. 

(3) Although correlation functions can be computed for gappy data, it is much more 
difficult to compute the cross-correlation function for these data. 

According to Sturges' analysis, the adverse effects of gaps der, ,xds on the length of 
gaps relative to the length of data set and on the magnitudes of~ dominant spectral 
components in the signal. 

3 .17 .3 .2  In terpola t ing  satel l i te- tracked posi t ional  da ta  

The analysis of positional (latitude, longitude) time series collected through the 
Service Argos satellite-tracking system illustrates some of the problems that may arise 
with standard interpolation procedures. Because the times that polar orbiting 
satellites pass over an oceanic region change through the day and because drifters 
move relative to the orbits of the satellite, the times between satellite fixes are ir- 
regular. At mid-latitudes, times between locational fixes can range from less than an 
hour to as long as 10 h. Typical average times between fixes are around 2-3 h 
(Thomson et al. 1997). The challenge is to generate regularly spaced time series of 
latitude (x) and longitude (y) from which one can derive regularly spaced time series 
of drifter zonal velocity (u -- ~Xx//Xt) and meridional velocity (v = A y / A t ) .  This 
challenge is especially problematic where a "duty cycle" has been programmed into 
the drifter transmitter to reduce the number (and cost) of transmissions to the passing 
NOAA satellites. A commonly used duty cycle, consisting of one day continuous 
transmission followed by two days of no transmission, results in large data gaps that 
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make calculation of mean currents difficult in regions having strong currents in the 
inertial and tidal frequency bands. The duty cycle of 8 h continuous transmission 
followed by 16 h of silence is superior for mid-latitude regions with strong inertial or 
tidal frequency variability. 

Because of strong inertial motions in the upper layer of the open ocean and strong 
tidal motions over continental margins, sampling intervals of 3-4 h, or less, are 
preferable. A typical time step of 6 h used in many analyses of satellite-tracked 
drifters is inadequate to resolve inertial motions except in regions equatorward of 30 ~ 
latitude where the inertial period T = l / / J~ner t ia l  exceeds 24 h. (At 50 ~ latitude, T 
16.5 h; see Coriolis frequency.) To generate time series at a reasonably short time step, 
say 3 h, we need to interpolate between irregularly spaced data points. To do this, we 
use a cubic spline interpolation for each of the positional records. After the correct 
start and end times for the oceanic portion of the record have been determined, the 
first step in the process is to remove any erroneous points from the "raw" data by 
calculating speeds over adjacent time steps, ti; e.g. ui = ( X i + l  - X i ) / / ( t i + l  - -  t i ) .  One then 
omits any unrealistic velocity values that exceed some threshold value (say 5 m/s). 
This "edited" record needs to undergo further editing by averaging successive data 
positions for which the time step At is less than an hour. The reason for this is quite 
simple: Because positional accuracies z~c and Ay are about 350 m roughly 63% of the 
time, velocity errors are roughly ~x/At  > 0.1 m/s when At < 1 h. Such error values 
are comparable to mean ocean currents and need to be eliminated from the records. 
Drifters located using GPS transmitters have smaller position errors and better 
velocity resolution. The time series also need to be examined for drogue-on, drogue- 
off. If a reliable strain sensor is built into the drogue system, it can be used to 
determine if and when the drogue fell off. Otherwise, one needs to calculate the speed- 
squared from the raw data and look for sudden major "jumps" in speed that signal loss 
of the drogue (Figure 3.21). We recommend this approach for all modern-day drifters 
since strain gauge sensors appear to be unreliable. At the time this book was being 
written, drogue loss and not battery or transmitter failure, was the primary cause of 
drifter "failure" in the open ocean. 

Provided there are more than about six accurate satellite fixes per day, the edited 
positional records can be interpolated to regularly spaced 3-h time series using a cubic 
spline interpolation algorithm. In general, the spline curve will be well behaved and 
the fit will resemble the kind of curve one would draw through the data by eye. Inertial 
and tidal loops in the trajectory will be fairly well resolved. Spurious results will occur 
where data gaps are too large to properly condition the spline interpolation algorithm. 
Assuming that the spline interpolation of positions looks reasonable, the next step is 
to calculate the velocity components from the rate of change of position. It is tempting 
to equate the coefficient for the linear term in the cubic spline interpolation to the 
"instantaneous" velocity at any location along the drifter trajectory. That would be a 
mistake. Although trajectories can look quite smooth, curvatures can be large and 
resulting velocities unrealistic. In fact, use of the spline coefficients to calculate 
instantaneous velocity components leads to an increase in the kinetic energy of the 
motions. The reader can verify this by artifically generating a continuous time series 
of position consisting of a linear trend and time varying inertial motions. The artifical 
position record is then decimated to 3-hourly values and a cubic spline interpolation 
scheme applied. Using instantaneous velocity values at the 3-hourly time steps derived 
from the interpolation, one finds that the kinetic energy in most frequency bands is 
increased relative to the original record. The recommended procedure is to calculate 
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the two horizontal velocity components (u, v) from the central differences between 
three consecutive values of the 3-hourly positional data. From first differences, the 
velocity components at each point "i" are then: ui = ( x i + l - x i ) / ( t i + l - t i )  and 
Vi = (Y/+I --Yi)/(t i+! - t i )  for simple two-point differences or for the recommended cen- 
tered values, U i = (Xi+I -- Xi-l) / ( t i+l  -- ti-1) and vi = (Yi+I -Y i -1 ) / ( t i+ l  - ti-1). In sum- 
mary, for those oceanic regions subject to pronounced inertial and tidal frequency 
motions, we have recommended the use of cubic spline interpolation to generate 2-4- 
hourly time series for position but simple linear interpolation of positional data to 
generate the corresponding time series for velocity. The interpolation requires more 
than 6-8 satellite fixes through the day to be successful. 

Trajectories with data gaps that are long relative to the local inertial period require 
special consideration. For gaps associated with a transmitter duty cycle of 8 h "on" 
followed by 16 h "off", we can obtain accurate daily mean positional values by least- 
squares fittl*ng a time-varying continuous function to successive segments of the 
irregular data and then averaging the resulting function over successive 24-h periods. 
This filtering processes is as follows (see Bograd et al., 1999): 

(1) 

(2) 

Use least squares to fit a specified function, ~(t), to several (N) successive 8-h days 
of zonal (or meridional) trajectory data. The general model has the form 
~(t) = a + bt + ct 2 + dt 3 + al sin (2~rft + ~1) ~'- a2 sin (27rw2t + r where a, b, c, d, 
al, q~l, a2 and ~2 a r e  the unknown coefficients,f is the local Coriolis frequency and 
&2 the semidiurnal frequency (0.081 cph). The phases 4~1, r for the two 
frequencies will vary from segment to segment. We suggest that four to five days 
(N = 4 or 5) of data be used for each segment fit. Shorter segments will have too 
few data for an accurate least-squares fit; longer segments will result in too much 
smoothing of the intermittant inertial and tidal motions; 
Repeat the least-squares operation for each segment of length N days, shifting 
forward in time by one day after each set of coefficients is determined. This yields one 
estimate for the first day ~l = ~(t = tl), two estimates for the second day, ~2, three 
estimates for the third day and four estimates for all other days until near the end of 
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the record when the number of estimates again falls to unity for the last record. 
Average all the values in each daily segment for each of the multiple curves r ( i -  1. 
..., up to N) to get the average daily latitude ~x(t) and longitude ~y(t); 

(3) The pairs of coefficients al, ~bl and a2, ~2 can be used to give rough reconstructions 
of the inertial and semidiurnal tidal motions, respectively. Expect the phases tc 
fluctuate considerably from segment to segment due to natural variability in the 
phases of the motions and from contamination by adjacent frequency bands. 

For the duty cycle consisting of one day "on" followed by two days "off", the model 
is less useful (except at equatorial latitudes) and requires a much longer data segmenl 
(say 12 days instead of four) for each least-squares analysis. 

3.17.3.3 Interpolation records from nearby stations 

Provided that the spatial scales of the processes being examined are large compared to 
the separation between sampling sites, short gaps in the time series at one location can 
be filled using an identical type of time series from a nearby location. For example. 
missing hourly tide heights at one coastal tide gauge station can be filled using hourly 
tide heights from an adjacent station further along the coast. To do this, we first use 
coincident data segments to determine the relative amplitudes and phases of the time 
series at the two locations. A simple cross-correlation analysis can be used to 
determine the peak time lag between the series while the relative amplitudes can be 
obtained from the ratio of the standard deviations of the two series. Gaps in one time 
series (series 1) are then filled by applying the appropriate time lag and amplitude 
factor to the uninterupted data series (series 2). A more sophisticated approach would 
be to first obtain the complex transfer function H12(~) = IH12(~)]exp [i~bl2(~)] as a 
function of frequency w for the two coincident time series. The missing time series 
values at site 1 could then be filled using the amplitudes [H12(~)I and phase differ- 
ences 4)12(~) of the transfer function applied to the uninterupted data series. 

3.18  C O V A R I A N C E  A N D  T H E  C O V A R I A N C E  
M A T R I X  

Covariance, like variance, is a measure of variability. For two variables, the covariance 
is a measure of the joint variation about a common mean. When extended to a 
multivariate population, the relevant statistic is the covariance matrix. As we shall see, 
it is equivalent to what will be introduced later as the "mean product matrix." The 
covariance and covariance matrix are the fundamental concepts behind the spatial 
analysis techniques discussed in the next chapter. 

3.18.1 Covariance and structure functions 

The covariance C(Y1, Y2), also written as cov[Y1, Y2], between variables Y1, Y2 is 

C(Y1, Y2) -- El(Y1 - #l)(Y2 - #2)] (3.18.1) 

where #1 = E[Y1] and #2 = E[Y2]. A positive covariance indicates that Y2 and Y1 
increase and decrease together while a negative covariance has Y2 decreasing as Y1 
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increases, and vice versa. We can expand equation (3.18.1) into a more convenient 
computational form 

C(Ya, Y2) = E[Y1Y2] - E[Y1]E[Y2] (3.18.2) 

Note, that if Y1, Y2 are independent random variables, then C[Y1, Y2] = O. 
For a two-dimensional isotropic velocity field, ui(y), the covariance tensor C(r), also 

called the structure function from earlier studies of turbulence, takes the form 

Co(r ) = (ui(y)uj(y + r)) 

__ ~2 If(r) -g(r)]rirj 
r 2 + g(r)6ij 

(3.18.3) 

where (.) denotes an ensemble average, r = ]r I, y = (Yl,Y2) is the position vector, f(r) 
and g(r) are, respectively, the one-dimensional longitudinal and transverse correlation 
functions, and 0 2 - -  (ui(y)2). The longitudinal and transverse correlation functions are 

(3.18.4a) 

(3.18.4b) 

f ( r )  : (uL (y)UL (y + r)) 

g(r) = (up(y)up(y + r)) 

where uL(y) and up(y) are the velocity fluctuations parallel and perpendicular to r - 
(rl, r2). The velocity fluctuations are normalized so that the correlations equal unity at 
r = 0. If the two-dimensional flow field is horizontally nondivergent, homogenous and 
isotropic, then Cij(r)= 0 and 

d 
g(r) - ~ [rf (r)] (3.18.5) 

Freeland et al. (1975) have used (3.18.5) to test for two-dimensional, nondivergent, 
homogenous, and isotropic low-frequency velocity structure in SOFAR float data 
collected in the North Atlantic. Stacey et al. (1988) used this relation to test for similar 
flow structure in the Strait of Georgia. Although close to the error limits in certain 
cases, the observed structure is generally consistent with horizontal, nondivergent, 
homogeneous and isotropic fl6w (Figure 3.22). The dotted lines in Figure 3.22 are the 
analytical functions 

f (r) = (1 + br) e -br (3.18.6a) 

g(r) -- (1 + br -b2r2))e -br (3.18.6b) 

3.18.2 A computational example 

If YI, Y2 have a joint probability density function 

2yl, 0_<yl _< 1; 0_<y2 _< 1 
f(Yl,Y2) -- 0, elsewhere 

(3.18.7) 

what is the covariance of Y1, Y2? We first write the expected value of Y1, Y2 as 
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V[,~ry] _ E[Ar (y  _ # ) ( y  _ ~)rA] - ArIW [ 

which will always be nonnegative for any A. 

(3.18.12) 

3.19 T H E  B O O T S T R A P  A N D  J A C K K N I F E  M E T H O D S  

Many data series in the natural sciences are nonreproducible and the researcher is left 
with only one set of observations with which to work. With only one realization of a 
series, it is impossible to compare it with a related series to determine if they are 
drawn from the same, or from different, populations. There are numerous oceano- 
graphic examples, including tsunami oscillations recorded by a coastal tide gauge, a 
single seasonal cycle of monthly mean currents at a mooring location, and a trend in 
long-term temperature data from a climate monitoring station. Marine biologists face 
similar limitations when analyzing groups of animal species caught in nets or bottom 
grab samples. The problem is that empirical observations are prone to error and any 
interpretation of an event must be devised based on statistical measures of the 
probability of the event. A fundamental measure for testing the validity of any 
property of a data set is its variance. Parametric statistical models have been 
developed which help the investigator decide the degree of faith to be placed in a given 
statistic. However, data and model are often nonlinear so that it is not usually possible 
to find an analytical expression for model variance in terms of the data variance. 

The parametric statistical methods presented in the previous sections were 
institutionalized long before the time of modern digital computers when use of 
analytical expressions greatly simplified the laborious hand calculation of statistical 
properties. During the past few decades, nonparametric statistical methods have been 
developed to take advantage of the increasing computational efficiencies of 
computers. An advantage of the new methods is that they permit investigations of 
the statistical properties of a sample which do not conform to a specific analytical 
model. Equally importantly, they can be applied to small data sets while still 
providing a reliable estimation of confidence limits on the statistic of interest. 
"Bootstrapping" and "jackknifing" are two of the more commonly used methods that 
could not be used effectively until the invention of the digital computer. Both are 
resampling techniques in which artificial data sets are generated by selection of points 
from an original set of data. Specifically, we start with a single realization of an 
"experiment" and from that one set of experimental data we create a multitude of new 
artificial realizations of the experiment without having to repeat the observations. 
These realizations are then used to estimate the reliability of the particular statistic of 
interest, with the underlying assumption that the sample data are representative of the 
entire population. 

In the bootstrapping method, random samples selected during the resampling 
process are replaced before each new sample is created. As a consequence, any data 
value can be drawn many times, or not at all. The name bootstrap arises from the 
expression "to lift oneself up by one's bootstraps". In jackknifing, artificial data sets 
are created by selectively and systematically removing samples from the original data 
set. The statistics of interest are recalculated for each resulting truncated data set and 
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the variability among the artificial samples used to describe the variability of these 
statistics. "Cross-validation" is an older technique. The idea is to split the data into 
two parts and set one part aside. Curves are fitted to the first part and then tested 
against values in the second part. Cross-validation consists of seeing how well the 
fitted curves predict the values in the portion of data set aside. The data can be 
randomly split in many ways and many times in order to obtain the needed statistical 
reliability. For additional information on this technique, the reader is referred to 
Efron and Gong (1983). 

3.19.1 Bootstrap method 

Introduced by Efron in 1977 (Diaconis and Efron, 1983), bootstrapping provides freedom 
from two limiting factors that have constrained statistical theory since its beginning: (1) 
the assumption of normal (Gaussian) data distributions; and (2) the focus on statistical 
measures whose theoretical properties can be analyzed mathematically. As with other 
nonparametric methods, bootstrapping is insensitive to assumptions made with respect to 
the statistical properties of the data and does not need an analytical expression for the 
connection between model and data statistical properties. Resampling techniques are 
based on the idea that we can repeat a particular experiment by constructing multiple 
data sets from the one measured data set. Application of the resampling procedure must 
be modeled on a testable hypothesis so that the resulting probability can be used to accept 
or reject the null hypothesis. The methods can be applied just as well to any statistic, 
simple or complicated. A bootstrap sample is a "copy" of the original data that may contain 
a certain value (datum, Xn) more than once, once, or not at all (i.e. the number of 
occurrences of x,, lies between 0 and N, where N is the number of independent data 
points). Introductions into the bootstrapping procedure can be found in Efron and Gong 
(1983), Diaconis and Efron (1983), and Tichelaar and Ruff (1989). Nemec and Brinkhurst 
(1988) apply the method to testing the statistical significance of biological species cluster 
analysis for which there are duplicate or triplicate samples for each location. 

Suppose that we have N values of a scalar or vector variable, xn (1 _< n _< N), whose 
statistical properties we wish~ to investigate in relation to another variable. This could 
be a univ~riate variable such as sea-level height xn - r / ( tn)  at a single location over a 
period of N time steps, tn, or the structure of the first mode empirical orthogonal 
function r (xn) as a function of location, xn. Alternatively, we could be dealing with a 
bivariate variable (Xln, x2,,) such as water temperature versus dissolved oxygen content 
from a series of vertical profiles. Results apply to any other set of measurements whose 
statistics we wish to determine. We may want to compare means and standard 
deviations (variances) of different records to see if they are significantly different. 
Alternatively, we might want to place confidence limits on the slope of a line derived 
using a standard least-squares fit to our bivariate data (Xln, x2n), or, determine how 
much confidence we can have in the coefficients we obtained from the least-squares fit 
of an annual cycle to a single set of 12 monthly mean current records from a mooring 
location. Note that if there is a high degree of correlation among the N data values, the 
N are not statistically independent samples and we are faced with the usual problem 
of dealing with an effective number  of degrees of freedom N* for the data set. 

The procedure is to equate each of our N independent data points with a number 
produced by a random number generator. We can do this by assigning each of the data 
values to separate uniform-width bins lying along the line ( -1 ,  +1), or (0, 1), 
depending on the random number generator being used. For N values, there will be N 
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the random number, rk (k - 1, ..., 10). For each bootstrap sample of 10 values, 10 random numbers are 
selected and located according bin range. The datum values x,, assigned to each range are then used to 

form the bootstrap sample. 

uniform-width bins on the line and each bin will be equated with one of the N data 
values (Figure 3.19.1). The bin width is 2 / N  if the line -1  to + 1 is used. A random 
number generator such as a Monte Carlo scheme is used to randomly select sequences 
of N bins corresponding to the multiple bootstrap samples. Suppose that the random 
number generator picks a number, r, from the range-1 <_ r _< 1. If this number falls 
into the range of bin k, corresponding to the range [ 2 ( k - 1 ) / N ] - 1  < 
rk <_ ( 2 k / N )  - 1, for k = 1, ... , N, then the data value xh assigned to bin k is taken 
to be one of the samples we need to make up our bootstrap data set. In Figure 3.19.1, 
there are 10 data values and 10 corresponding random number segments of length 0.2, 
with datum value xl assigned to the range -1 .0  t o -  0.8, x2 assigned to -0.8 t o -  0.6, 
and so on. Since bootstrapping works with replacement, it is quite possible to get the 
same bin several times, or not at all. The first N data values from our resampling 
constitute the first bootstrap sample. The process is then repeated again and again 
until hundreds or thousands of bootstrap samples have been generated. Diaconis and 
Efron (1983) discuss making a billion bootstrap samples. They also take another 
approach. Instead of generating one bootstrap sample at a time by equating bins along 
the real line ( -1 ,  1) with N samples, they generate all the needed multiple copies of all 
the N data values (say one million copies of each of the original data values or data 
points) and place them all in a rotating "lotto" bin. They then reach in and pull out all 
the requisite number of N-value bootstrap samples from the shuffled points, being 
careful to throw each data point back into the bin before selecting the next value. This 
requires some sort of label for each value in the bin based on a random selection 
process that can identify a data point that has been selected. 

Although bootstrapping has yet to find widespread application in the marine 
sciences, there are several noteworthy examples in the literature. Enfield and Cid 
(1990) examined the stationarity of different groupings of El Nifio recurrence rates 
based on the chronology of Quinn et al. (1987). For example, group 1 consisted of all 
strong (S) and very strong (VS) events for the period 1525-1983, while groups 4 and 5 
consisted of S / V S  events for times of high and low solar activity for this period. 
Groups 6-10 contained different samples of intensities for the modern period of 1803- 
1987. Maximum likelihood estimation was used to fit a two-parameter Weibull 
distribution f ( t )  to each sample group, 

f (t) = (13t/~-l / r  ~) exp [-(t/r)/~] (3.19.1) 

where/3 and r are, respectively, the shape (peakedness) and time scale (RMS return 
interval) parameters, and t is the random variable for the return interval. For each 
group, only a single distribution could be fitted. To derive estimates of the mean and 
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standard deviations of the parameters for each group, 500 bootstrap samples were 
generated and the Weibull parameters obtained for each sample. As indicated by 
Figure 3.19.2, this number of samples provides good convergence to the mean value 
for the Weibull distribution fit for each group. The distribution of E1 Nifio return 
events for bootstrap samples for all intensities for the "early modern" period 1803- 
1891 is shown in Figure 3.19.3 along with its corresponding Weibull distribution. 
Enfield and Luis use the resampling analysis to show that, for the groups associated 
with times of low solar activity and those associated with times of high solar activity, 
there is comparatively little overlap between the bootstrap-derived frequency 
histograms and mean return time scales, 7- (years) (Figure 3.19.4). These results sug- 
gest that there is a statistical difference in the return times for the two groups and that 
return times are nonstationary. 
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Figure 3.19.3. Histogram of El Ni~o return times for all events between 1803 and 1987 (group #7) 
derived using the bootstrapping resampling technique. The solid curve is the Weibull distribution fitted to 
the histogram. The modal and mean return intervals (3.3 and 3.8 years, respectively) are the derived 

from the MLE-estimated population parameters. (From Enfield and Cid, 1990.) 
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Much of the present evidence for possible global warming is based on Northern 
Hemispheric annual surface air temperature records over the past 100 years (Jones et 
al., 1986; Hansen and Lebedeff, 1987; Gruza et al., 1988). Imerest in the reliability of 
the means and trends of these records (labeled H, J, and G) prompted Eisner and 
Tsonis (1991) to examine differences in means and trends of pairs of these records for 
the three global mean temperature curves. The data sets have been constructed using 
different averaging methods and different observational data bases. Data set H 
contains only observations from land stations whereas data set J uses both land and 
ship-based observations. Averages for set H are derived using equal-area boxes over 
the globe whereas data set G is constructed by visual inspection of anomalies from sea- 
level temperature analyses. The usual assumption is that these time series are 
representative of the same population, a result that appears to be supported by the 
statistically significant correlation r > 0.79 among the different curves. As pointed out 
by Eisner and Tsonis, however, the presence of trends in these data means that the 
linear cross-correlation coefficient may not be a reliable measure of the covariability 
of the records. Two questions can be addressed using the bootstrapping method: (1) 
are the three versions of the temperature records significantly different that we can 
say they are not drawn from the same population? (The null hypothesis is false.); and 
(2) are the trends in the three records sufficiently alike that they are measuring a true 
rise in global temperature? 
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samples. The x-axis (ordinate) gives the number of times the bootstrap mean fell into a given interval. All 
three distributions are located to the left of a zero mean difference. (From Elsner and Tsonis, 1991.) 
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Figure 3.19.5. Bootstrap-generated histograms of global air temperature difference records obtained by 
subtracting the temperature records of Jones et al. (1986) (J), Hansen and Lebedeff (1987) (H), and 
Gruza et al. (1988) (G). (b) Same as (a), but for slope (trend) of the temperature difference curves. All 
three distributions are separated from zero indicating significant differences between long-term surface 

temperature trends given by each of the three data sets. (From Elsner and Tsonis, 1991.) 
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Because of the strong linear correlation in the records, the authors work with 
difference records. A difference record is constructed by subtracting the annual (mean 
removed) departure record of one data set from the annual departure record of another 
data set. Although not zero, the cross-correlation for the difference records is 
considerably less than those for the original departure records, showing that 
differencing is a form of high-pass filtering that effectively reduces biasing from the 
trends. The average difference for all 97 years of data used in the analyses (the 
difference record H-J relative to the years 1951-1980) is -0.05~ indicating that the 
hemispheric temperatures of Jones et al. (1986) are slightly warmer than those of 
Hansen and Lebedeff (1987). Similar results were obtained for H-G and J-G. To see if 
these differences are statistically significant, 10,000 bootstrap samples of the difference 
records were generated. The results (Figure 13.9.5a) suggest that all three hemispheric 
temperature records exhibit significantly different nonzero means. The overlap in the 
distributions is quite minimal. The same process was then used to examine the trends 
in the difference records. For the H-J record, the trend is +0.15~ so that the 
trend of Hansen and Lebedeff is greater than that of Jones et al. As indicated in Figure 
13.9.5(b), the long-term trends were distinct. On the basis of these results, the authors 
were forced to conclude that at least two of the data sets do not represent the true 
population (i.e. the truth). More generally, the results bring into question the 
confidence one can have that the long-term temperature trends obtained from these 
data are representative of trends over hemispheric or global scales. 

Biological oceanographers often have difficult sampling problems that can be 
addressed by bootstrap methods. For example, the biologist may want to use cluster 
analyses of animal abundance for different locations to see if species distributions 
differ statistically from one sampling location (or time) to the next. Cluster analyses of 
ecological data use dendrograms--linkage rules which group samples according to the 
relative similarity of total species composition--to determine if the organisms in one 
group of samples have been drawn from the same or different statistical assemblages 
of those of another group of samples. Provided there are, at least, replicates for most 
samples, bootstrapping~can be used to derive tests for statistical significance of 
similarity linkages in cluster analyses (Burd and Thomson, 1994). For further 
information on this aspect of bootstrapping, the reader is referred to Nemec and 
Brinkhurst (1988). Finally, in this section, we note that it is possible to vary the 
bootstrap size by selecting samples smaller than N, the original size of the data set, to 
compare various estimator distributions obtained from different sample sizes. This 
allows one to observe the effects of varying sample size on sample estimator 
distributions and statistical power. 

3.19.2 Jackknife method 

Several other methods are similar in concept to bootstrapping but differ significantly 
in detail. The idea, in each case, is to generate artificial data sets and assess the 
variability of a statistic from its variability over all the sets of artificial data. The 
methods differ in the way they generate the artificial data. Jackknifing differs from 
bootstrapping in that data points are not replaced prior to each resampling. This 
technique was first proposed by Maurice Quenouille in 1949 and developed by John 
Tukey in the 1950s. The name "jackknife" was used by Tukey to suggest an all- 
purpose statistical tool. 
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A jackknife resample is obtained by deleting a fixed number of data points (j) from 
the original set of N data points. For each resample, a different group of j values is 
removed so that each resample consists of a distinct collection of data values. In the 
"deleteoj" jackknife sample, there will be k = N - j  samples in each new truncated 
data set. The total number of new artificial data that can be generated is 

which the reader will recognize as NPj = N ! / ( N - j ) ! ,  the number of permutations of 
N objects taken j at a time. Consider the simple delete-1 jackknife. In this case, there 
are N -  1 samples per artificial data set and a total of NPj = N new data sets that can 
be created by systematically removing one value at a time. As illustrated by Figure 
3.19.6, an original data set of four data values will yield a total of four distinct delete-1 
jackknife samples, each of size three (3), which can then be used to examine various 
statistics of the original data set. The sample average of the data derived by deleting 
the ith datum, denoted by the subscript (i), is 

N x  - x i _ 1 N 

X ( i )  ~ N--------Z~ - N - 1 ~ xj (3.19.2) 
j ~  

where 

1 N 

i=1 

DATA 

X J / 
MULTIPLE MODEL ESTIMATES 

l m~ I rm~ [model, I [m~ 

Figure 3.19.6. Schematic representation of the jackknife. The original data vector has four components 
(samples), labeled d l to d4. The data are resampled by deleting a fixed number of components (here, one) 
from the original data to form multiple jackknife resamples (in case, four). Each resample defines a model 
estimate. The multiple model estimates are then combined to a best model and its standard deviation. 

(From Tichelaar and Ruff, 1989.) 
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is the mean found using all the original data. The average of the N jackknife averages, 
X(i), is 

~, 1 N 
- - ~  ZX(i)--X" (3.19.3) 

i=1 

The last result, namely that the mean of all the jackknife samples is identical to the 
mean of the original data set, is easily obtained using equation (3.19.2). The estimator 
for the standard deviation, o-j, of the delete-1 jackknife is 

N 211/2 crj- Z [(~'(i)--X*) (3.19.4a) 
i=1 

l ~ [(xi - x)2] l/2 (3.19.4b) 
N - l i =  1 

where (3.19.4b) is the usual expression for the standard deviation of N data values. 
Our expression differs slightly from that of Efron and Gong (1983) who use a de- 
nominator of 1 / [ ( N -  1)N] instead of 1/(N- 1) 2 in their definition of variance. The 
advantage of (3.19.4a) is that it can be generalized for finding the standard deviation 
of any estimator 0 that can be derived for the original data. In particular, if 0 is a 
scalar, we simply replace x~i) with O(i) and x* with 0* where O(i) is an estimator for 0 
obtained for the data set with the ith value removed. Although the jackknife requires 
fewer calculations than the bootstrap, it is less flexible and at times less dependable 
(Efron and Gong, 1983). In general, there are N jackknife samples for the delete-1 
jackknife as compared with 

2 N - 1 P N  --  ( 2NN 1 

bootstrap points. 
Our example of jackknifing is from Tichelaar and Ruff (1989) who generated N - 

20 unequally spaced data values Yi that follow the relation y i -  cxi + ci (c = 1.5, 

exactly), where Ci is a noise component drawn from a "white" spectral distribution 
with a normalized standard deviation of 1.5 and mean of zero. The least squares 
estimator for the standard deviation of the slope is 

2 /E O" -- Z [(Yi -- CXi) (N - 1) x~ (3.19.5) 
i=l 

where ~ ~-~yixi/~-']~X2i Two jackknife estimators were used: (1) The delete-1 jackknife, 
for which the artificial sample sizes are N -  1 = 19; and (2) The delete-half (N/2) 
jackknife for which the sample sizes are N -  N/2 = 10. In both cases, the jackknife 
resamples had equal weighting in the analysis. For the delete-half jackknife, a Monte 
Carlo determination of 100 subsamples was used since the total samples 20P~0 - 20!/ 
10! is very large. The results are presented in Figure 3.19.7. The last panel gives the 
corresponding result for the bootstrap estimate of the slope using 100 bootstrap 
samples. Results showed that the bootstrap standard error of the slope was slightly 
lower than those for both jackknifing estimates. 
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Figure 3.19. 7. Use of the bootstrapping technique to estimate the reliability of a linear regression line. (a) 
A least-squares fit through the noisy data, for which the estimated slope d = 1.518 + 0.0138 (• 
standard error); (b) The normalized frequency of occurrence distribution, f, for the delete-1 jackknife 
which yields d =  1.518 • 0.0136; (c) As in (b) but for the delete-half jackknife for which 
d --- 1.517 + 0.0141; (d) The corresponding bootstrapping estimate, for which d = 1.517 + 0.0132. 
Note the scale difference between (b) and (c). The dashed line is the analytical distribution of ~. (From 

Tichelaar and Ruff, 1989.) 




